
FOSDEM PGDay
January 30, 2026

Stefan FERCOT

stefan.fercot@dataegret.com

pgBackRest magic you’ll wish you knew
sooner

1

FOSDEM PGDay
January 30, 2026 2

FOSDEM PGDay
January 30, 2026

DataEgret.com

Stefan Fercot
PostgreSQL Expert @Data Egret

PostgreSQL consulting, support, and training
pgBackRest contributor and advocate
Also known as pgstef
https://pgstef.github.io

3

https://pgstef.github.io/

FOSDEM PGDay
January 30, 2026

DataEgret.com

What is pgBackRest?
Reliable backup and restore tool for PostgreSQL
Supports local and remote operation (via SSH or TLS)
Parallel and asynchronous operations
Works with S3, Azure, GCS, NFS, and other storage backends
Multiple compression methods (gz , bz2 , lz4 , zst)
Supports client-side encryption (aes-256-cbc)

4

FOSDEM PGDay
January 30, 2026

DataEgret.com

pgBackRest: faster WAL archiving, safer restores
Archiving mechanics
Restore scenarios

5

FOSDEM PGDay
January 30, 2026

DataEgret.com

Archiving: the happy path and the traps
archive_command vs pg_receivewal (not supported)

How can we make archiving faster?
What can go wrong?

6

FOSDEM PGDay
January 30, 2026

DataEgret.com

WAL archiving process

7

FOSDEM PGDay
January 30, 2026

DataEgret.com

.partial WAL file
Usually < 16MB
pg_receivewal behaves like a standby without data files
.partial is pushed by the standby server at promotion time

8

FOSDEM PGDay
January 30, 2026

DataEgret.com

Example (1)

9

FOSDEM PGDay
January 30, 2026

DataEgret.com

Example (2)

archive_command = 'gzip < %p > /shared/archives/%f.gz'

pg_receivewal -D /shared/receivewal --compress=gzip -v

/usr/pgsql-18/bin/pgbench -i -s 65

10

FOSDEM PGDay
January 30, 2026

DataEgret.com

Example (3)

$ ps -o pid,cmd fx

 PID CMD

 5461 /usr/pgsql-18/bin/postgres -D /var/lib/pgsql/18/data/

 ...

 5537 _ postgres: walsender ... streaming 0/34E74D38

 5590 _ postgres: walsender ... streaming 0/34E74D38

$ ls /shared/archives

...

000000010000000000000033.gz

$ ls /shared/receivewal

...

000000010000000000000033.gz

000000010000000000000034.gz.partial

11

FOSDEM PGDay
January 30, 2026

DataEgret.com

Example (4)

pg_receivewal still points to the old primary!

$ psql -c "SELECT pg_promote();"

$ ls /shared/archives/

...

000000010000000000000034.partial.gz

00000002.history.gz

12

FOSDEM PGDay
January 30, 2026

DataEgret.com

Timelines and .history files
A correct restore — PITR or not — always involves a timeline switch.

When archive recovery completes or a standby is promoted -> new timeline
encoded in WAL segment file names
identifies the WAL record series generated after that recovery
recorded in .history files

13

FOSDEM PGDay
January 30, 2026

DataEgret.com

Faster archiving?
Compression types
Compression level
Async archiving

14

FOSDEM PGDay
January 30, 2026

DataEgret.com

Compression types
File compression types supported (compress-type):

bz2 - bzip2
gz - gzip (default)
lz4

zst - Zstandard

15

FOSDEM PGDay
January 30, 2026

DataEgret.com

Compression level
When compress-level is not specified:

defaults to values based on compress-type
bz2 : 9
gz : 6
lz4 : 1
zst : 3

16

FOSDEM PGDay
January 30, 2026

DataEgret.com

Async archiving
With archive-async=y :

temporary data (acknowledgments) stored in spool-path
early archiving with process-max workers

17

FOSDEM PGDay
January 30, 2026

DataEgret.com

Example (1) - initial state

SELECT application_name, sent_lsn, write_lsn, flush_lsn FROM pg_stat_replication;

 application_name | sent_lsn | write_lsn | flush_lsn

------------------+------------+------------+------------

 walreceiver | 0/34E74D38 | 0/34E74D38 | 0/34E74D38

 pg_receivewal | 0/34E74D38 | 0/34E74D38 | 0/34000000

(2 rows)

SELECT last_archived_wal FROM pg_stat_archiver;

 last_archived_wal

 000000010000000000000033

(1 row)

18

FOSDEM PGDay
January 30, 2026

DataEgret.com

Example (2) - archiving too slow

/usr/pgsql-18/bin/pgbench -n -P 1 -T 60 -j 2 -c 50

SELECT application_name, sent_lsn, write_lsn, flush_lsn FROM pg_stat_replication;

 application_name | sent_lsn | write_lsn | flush_lsn

------------------+------------+------------+------------

 walreceiver | 0/67F3CE30 | 0/67F33830 | 0/67F0D558

 pg_receivewal | 0/67F3CE30 | 0/62780B38 | 0/62000000

(2 rows)

SELECT last_archived_wal FROM pg_stat_archiver;

 last_archived_wal

 000000010000000000000048

(1 row)

19

FOSDEM PGDay
January 30, 2026

DataEgret.com

Example (3) - final state

SELECT application_name, sent_lsn, write_lsn, flush_lsn FROM pg_stat_replication;

 application_name | sent_lsn | write_lsn | flush_lsn

------------------+------------+------------+------------

 walreceiver | 0/A82E1770 | 0/A82E1770 | 0/A82E1770

 pg_receivewal | 0/A82E1770 | 0/A82E1770 | 0/A8000000

(2 rows)

SELECT last_archived_wal FROM pg_stat_archiver;

 last_archived_wal

 0000000100000000000000A7

(1 row)

20

FOSDEM PGDay
January 30, 2026

DataEgret.com

Example (4) - improvements

process-max=2

archive-async=y

compress-type=zst

/usr/pgsql-18/bin/pgbench -n -P 1 -T 60 -j 2 -c 50

SELECT application_name, sent_lsn, write_lsn, flush_lsn FROM pg_stat_replication;

 application_name | sent_lsn | write_lsn | flush_lsn

------------------+------------+------------+------------

 walreceiver | 0/C9B5F610 | 0/C9B5F610 | 0/C9B5AE00

 pg_receivewal | 0/C9B5F610 | 0/BE8D22E0 | 0/BE000000

(2 rows)

SELECT last_archived_wal FROM pg_stat_archiver;

 last_archived_wal

 0000000100000000000000C7

(1 row)

21

FOSDEM PGDay
January 30, 2026

DataEgret.com

Understanding logs
archive-push console output goes into the PostgreSQL logs

demo-archive-push-async.log

P00 INFO: archive-push command begin 2.58.0: [pg_wal/0000000100000000000000C6] ...

P00 INFO: pushed WAL file '0000000100000000000000C6' to the archive asynchronously

P00 INFO: archive-push command end: completed successfully (639ms)

P00 INFO: archive-push command begin 2.58.0: [pg_wal/0000000100000000000000C7] ...

P00 INFO: pushed WAL file '0000000100000000000000C7' to the archive asynchronously

P00 INFO: archive-push command end: completed successfully (20ms)

P00 INFO: archive-push:async command begin 2.58.0: [/var/lib/pgsql/18/data/pg_wal] ...

P00 INFO: push 2 WAL file(s) to archive: 0000000100000000000000C6...0000000100000000000000C7

P02 DETAIL: pushed WAL file '0000000100000000000000C7' to the archive

P01 DETAIL: pushed WAL file '0000000100000000000000C6' to the archive

P00 INFO: archive-push:async command end: completed successfully (554ms)

22

FOSDEM PGDay
January 30, 2026

DataEgret.com

Async high-level implementation details
Create the spool out path if it does not already exist
Read .ready files from archive_status
Remove .ok files that are not in the ready list
Return .ready files that are not in the .ok list
Create the parallel executor and run jobs
On success:

log success
write the status file

23

FOSDEM PGDay
January 30, 2026

DataEgret.com

What can go wrong with archiving?

Things can get worse… and they will!

24

FOSDEM PGDay
January 30, 2026

DataEgret.com

WAL segments piling up…
An error prevents PostgreSQL from removing/recycling WAL files!

$ ls data/pg_wal/archive_status |grep .ready

...

00000001000000020000001B.ready

00000001000000020000001C.ready

00000001000000020000001D.ready

00000001000000020000001E.ready

25

FOSDEM PGDay
January 30, 2026

DataEgret.com

Archiving queue
archive-push-queue-max

maximum size of the PostgreSQL archive queue
prevents WAL storage from filling up until PostgreSQL stops…
…but can create missing archives!

Monitor archiving to ensure it keeps working

26

FOSDEM PGDay
January 30, 2026

DataEgret.com

A very realistic failure chain
NFS/S3/… hiccup -> archive queue fills
archive-push-queue-max reached

PostgreSQL continues -> WAL is recycled
Backup exists…
…but PITR fails due to missing WAL

a new backup is needed!

27

FOSDEM PGDay
January 30, 2026

DataEgret.com

Log error example without archive-async

P00 INFO: archive-push command begin 2.58.0: [pg_wal/0000000100000001000000E0] ...

P00 WARN: dropped WAL file '0000000100000001000000E0' because archive queue exceeded 128MB

P00 INFO: archive-push command end: completed successfully (8ms)

P00 INFO: archive-push command begin 2.58.0: [pg_wal/0000000100000001000000E1] ...

P00 ERROR: [103]: unable to find a valid repository:

...

P00 INFO: archive-push command end: aborted with exception [103]

LOG: archive command failed with exit code 103

28

FOSDEM PGDay
January 30, 2026

DataEgret.com

Side effect

8 x 16MB <= 128MB
Only the oldest WAL file gets purged

$ ls data/pg_wal/archive_status |grep .ready

0000000100000001000000E1.ready

0000000100000001000000E2.ready

0000000100000001000000E3.ready

0000000100000001000000E4.ready

0000000100000001000000E5.ready

0000000100000001000000E6.ready

0000000100000001000000E7.ready

0000000100000001000000E8.ready

29

FOSDEM PGDay
January 30, 2026

DataEgret.com

Log error example with archive-async

P00 WARN: dropped WAL file '000000010000000200000001' because archive queue exceeded 128MB

P00 WARN: dropped WAL file '000000010000000200000002' because archive queue exceeded 128MB

P00 WARN: dropped WAL file '000000010000000200000003' because archive queue exceeded 128MB

P00 WARN: dropped WAL file '000000010000000200000004' because archive queue exceeded 128MB

P00 WARN: dropped WAL file '000000010000000200000005' because archive queue exceeded 128MB

P00 WARN: dropped WAL file '000000010000000200000006' because archive queue exceeded 128MB

P00 WARN: dropped WAL file '000000010000000200000007' because archive queue exceeded 128MB

P00 WARN: dropped WAL file '000000010000000200000008' because archive queue exceeded 128MB

P00 WARN: dropped WAL file '000000010000000200000009' because archive queue exceeded 128MB

P00 INFO: archive-push command begin 2.58.0: [pg_wal/00000001000000020000000A] ...

P00 ERROR: [103]: unable to find a valid repository:

...

P00 INFO: archive-push command end: aborted with exception [103]

LOG: archive command failed with exit code 103

30

FOSDEM PGDay
January 30, 2026

DataEgret.com

Side effect

The entire 128MB waiting queue gets purged

$ ls data/pg_wal/archive_status |grep .ready

00000001000000020000000A.ready

00000001000000020000000B.ready

31

FOSDEM PGDay
January 30, 2026

DataEgret.com

Restore: pgBackRest + PostgreSQL
pgBackRest handles the restore;

PostgreSQL handles the recovery!

Let’s talk about restore command and recovery targets…

32

FOSDEM PGDay
January 30, 2026

DataEgret.com

Restore type?
--type (and --target to define the target)

default : end of the WAL archive stream
immediate : backup consistency point
lsn : LSN (Log Sequence Number), recovery_target_lsn
name : restore point, recovery_target_name
xid : transaction ID, recovery_target_xid
time : timestamp, recovery_target_time

…

33

FOSDEM PGDay
January 30, 2026

DataEgret.com

Backup set
--set

default: latest
auto-selected for time and lsn targets

34

FOSDEM PGDay
January 30, 2026

DataEgret.com

Timeline
--target-timeline

recovery_target_timeline

default: latest
useful value: current

35

FOSDEM PGDay
January 30, 2026

DataEgret.com

What happens at the target?
--target-action (recovery_target_action)

pause : pause when the recovery target is reached
promote : promote the instance and switch to a new timeline
shutdown : shut down the server

36

FOSDEM PGDay
January 30, 2026

DataEgret.com

Delta mode: restore into an existing PGDATA
--delta (CLI) or delta=y (config)

Uses checksums to decide what to copy
Restore: allows restoring into a non-empty data directory
Backup: uses checksums instead of timestamps

Restore or backup using checksums.

During a restore, by default the PostgreSQL data and tablespace directories

are expected to be present but empty. This option performs a delta restore

using checksums.

During a backup, this option will use checksums instead of timestamps to

determine if files will be copied.

37

FOSDEM PGDay
January 30, 2026

DataEgret.com

Delta restore is not incremental backup
Delta restore

affects how files are copied during restore
allows restoring into a non-empty data directory
does not change backup format or WAL requirements

Incremental backup
affects how backups are created
stores only changes since a previous backup
requires a dependency chain
not related to --delta

--delta backup: uses checksums, not timestamps

38

FOSDEM PGDay
January 30, 2026

DataEgret.com

Selective restore
--db-include

databases not explicitly included are restored as sparse, zeroed files
system databases are always restored unless explicitly excluded

(template0 , template1 , postgres)
--db-exclude

excluded databases are restored as sparse, zeroed files
with --db-include , this only applies to system databases

39

FOSDEM PGDay
January 30, 2026

DataEgret.com

Example (1)

 Name | Size

-----------+---------

 db1 | 1015 MB

 db2 | 3047 MB

db1=# SELECT pg_create_restore_point('dont_fear_demo_effect');

 pg_create_restore_point

 4/91FF5B58

(1 row)

db1=# DELETE FROM pgbench_accounts;

DELETE 6500000

40

FOSDEM PGDay
January 30, 2026

DataEgret.com

Example (2) - restore command

$ pgbackrest restore --stanza=demo --type=name --target='dont_fear_demo_effect' --db-include=db1

P00 INFO: restore command begin 2.58.0: ...

P00 INFO: repo1: restore backup set 20260130-105007F, recovery will start at ...

P00 INFO: write updated /var/lib/pgsql/18/data/postgresql.auto.conf

P00 INFO: restore global/pg_control

P00 INFO: restore size = 4GB, file total = 1603

P00 INFO: restore command end: completed successfully

$ cat /var/lib/pgsql/18/data/postgresql.auto.conf

Recovery settings generated by pgBackRest restore on ...

restore_command = 'pgbackrest --stanza=demo archive-get %f "%p"'

recovery_target_name = 'dont_fear_demo_effect'

$ du -hs /var/lib/pgsql/18/data

1.1G /var/lib/pgsql/18/data

41

FOSDEM PGDay
January 30, 2026

DataEgret.com

Example (3) - the result

db1=# SELECT COUNT(*) FROM pgbench_accounts;

 count

 6500000

(1 row)

db1=# \c db2

connection to server on socket "/run/postgresql/.s.PGSQL.5432" failed:

 FATAL: relation mapping file "base/16440/pg_filenode.map" contains invalid data

db1=# DROP DATABASE db2; -- corrupted after selective restore

DROP DATABASE

42

FOSDEM PGDay
January 30, 2026

DataEgret.com

Selective restore summary
Saves disk space and restore time (not recovery time!)
pgBackRest restore --db-include with --type=immediate usually works well
Selective PITR can work; otherwise, if it does not, a regular restore is required
Selective restore is an optimization, not a guarantee

43

FOSDEM PGDay
January 30, 2026

DataEgret.com

Asynchronously fetch WAL segments
With archive-get and archive-async=y :

prefetches up to archive-get-queue-max WAL segments to speed up recovery
uses process-max workers
stores them in spool-path

44

FOSDEM PGDay
January 30, 2026

DataEgret.com

Conclusion
Tune your archiving (async, compression, concurrency)
Monitor backups and archives
Regularly test restores

Schrödinger’s Law of Backups

The condition/state of any backup is unknown until a restore is attempted.

45

FOSDEM PGDay
January 30, 2026

DataEgret.com

Questions?
contact@dataegret.com

46

mailto:contact@dataegret.com

