pgBackRest magic you’ll wish you knew
sooner

data egret Stefan FERCOT

Your remote PostgreSQL DBA team Stefa N .fe rCOt@d ata egret. com

SECURING YOUR POSTGRESQL DATABASE
AVAILABILITY AND HIGH PERFORMANCE

e Migration

e Performance audit

e Cloud Cost management

 Backup & restore

e Architecture review

e DataOps/CDC projects

e Consulting for data science and analytics teams
e PostgreSQL Courses for DBA and Developers

EXPERTISE DEVELOPMENT

Senior DBA with 10+ years of PostgreSQL Contributors
experience in PostgreSQL Involved In new
administration. PostgreSQL feature and

d Open Alliance
a . For PostgreSQL Education

D S B gﬂginnggsmte

CUSTOMISATION

Flexible approach and
dedicated team focused

on success of your project.

———

d: aegret

COMMUNITY

Recognised as
Significant Contributing
Sponsor to PostgreSQL.

extention development.

Stefan Fercot

e PostgreSQL Expert @Data Egret
» PostgreSQL consulting, support, and training
e pgBackRest contributor and advocate
e Also known as pgstef
e https://pgstef.github.io

DataEgret.com FOSDEM PGDay
January 30, 2026

https://pgstef.github.io/

What is pgBackRest?

e Reliable backup and restore tool for PostgreSQL

e Supports local and remote operation (via SSH or TLS)

e Parallel and asynchronous operations

e Works with S3, Azure, GCS, NFS, and other storage backends
e Multiple compression methods (gz, bz2, 124, zst)

e Supports client-side encryption (aes—256-cbe)

DataEgret.com FOSDEM PGDay
January 30, 2026

pgBackRest: faster WAL archiving, safer restores

e Archiving mechanics
e Restore scenarios

FOSDEM PGDay

Januar y 30, 2026

Archiving: the happy path and the traps

® archive_command VS pg_receivewal (not Supported)
e How can we make archiving faster?
e What can go wrong?

WAL archiving process

WAL Se,gme,n'ts
77777777777 s st _ [meumves

/ /'y /, .
/s ;};’;’/Z’;;;ﬁ x”?/;;j, current tronsactions

@ DataEgret.com FOSDEM PGDay

January 30, 2026

.partial WAL file

e Usually<16MB
e 1o _receivewal behaves like a standby without data files
e .partial ISpushed by the standby server at promotion time

@ DataEgret.com FOSDEM PGDay

January 30, 2026

Example (1)

DataEgret.com FOSDEM PGDay
January 30, 2026

Example (2)

archive_command = 'gzip < %p > /shared/archives/%f.gz'
pg_receivewal -D /shared/receivewal ——compress=gzip -V

/usr/pgsql-18/bin/pgbench -1 —-s 65

@ DataEgret.com FOSDEM PGDay

January 30, 2026

Example (3)

S ps —o pid,cmd fx
PID CMD
5461 /usr/pgsgl-18/bin/postgres -D /var/lib/pgsgl/18/data/
5537 _ postgres: walsender ... streaming 0/34E74D38
5590 _ postgres: walsender ... streaming 0/34E74D38

S 1ls /shared/archives

000000010000000000000033.9gz

S 1ls /shared/receivewal

000000010000000000000033 .9z
000000010000000000000034.gz.partial

DataEgret.com FOSDEM PGDay
January 30, 2026

Example (4)
$ psgql -c "SELECT pg_promote();"
S 1s /shared/archives/

000000010000000000000034.partial.gz
00000002 .history.gz

pg_receivewal Still pointsto the old primary!

@ DataEgret.com FOSDEM PGDay

January 30, 2026

Timelines and .nistory files
A correct restore — PITR or not — always involves a timeline switch.

e When archive recovery completes or a standby is promoted -> new timeline
= encoded in WAL segment file names
= identifies the WAL record series generated after that recovery
s recordedin .nistory files

FOSDEM PGD
@ DataEgret.com 05 Gbay

January 30, 2026

Faster archiving?

e Compression types
e Compression level
e Async archiving

@ DataEgret.com FOSDEM PGDay

January 30, 2026

Compression types

e File compression types supported (compress-—type):

" bz2 - bzip2
" o: - gzip (default)
" 1z4

= .-t -Zstandard

@ DataEgret.com FOSDEM PGDay

January 30, 2026

Compression level

e When compress-1evel 1S Not specified:
m defaults to values based on compress-type
0 pz2 .9
0 gz .6
0 1z4:1

O zst 3

@ DataEgret.com FOSDEM PGDay

January 30, 2026

Async archiving

e With archive—async=y .
» temporary data (acknowledgments) stored in spoo1-path
» early archiving with process-max workers

@ DataEgret.com FOSDEM PGDay

January 30, 2026

Example (1) - initial state

SELECT application_name, sent_lsn, write_1lsn, flush_lsn FROM pg_stat_replication;

application_name | sent _1sn | write 1lsn | flush 1lsn
—————————————————— e
walreceiver | 0/34E74D38 | 0/34E74D38 | 0/34E74D38
pPg_receivewal | 0/34E74D38 | 0/34E74D38 | 0/34000000

(2 rows)

SELECT last_archived_wal FROM pg_stat_archiver;
last archived wal

000000010000000000000033
(1 row)

@ DataEgret.com FOSDEM PGDay

January 30, 2026

Example (2) - archiving too slow
/usr/pgsql-18/bin/pgbench -n -P 1 -T 60 -7 2 —-c 50

SELECT application_name, sent_lsn, write_1lsn, flush_lsn FROM pg_stat_replication;

application_name | sent _1sn | write 1lsn | flush 1lsn
—————————————————— -
walreceiver | 0/67F3CE30 | 0/67F33830 | 0/67F0D558
pPg_receivewal | 0/67F3CE30 | 0/62780B38 | 0/62000000

(2 rows)

SELECT last_archived_wal FROM pg_stat_archiver;
last archived wal

000000010000000000000048
(1 row)

FOSDEM PGD
@ DataEgret.com 05 GDay

January 30, 2026

Example (3) - final state

SELECT application_name, sent_lsn, write_1lsn, flush_lsn FROM pg_stat_replication;

application_name | sent _1sn | write 1lsn | flush 1lsn
—————————————————— e
walreceiver | 0/A82E1770 | O/A82E1770 | O/A82E1770
pPg_receivewal | 0/A82E1770 | O/A82E1770 | 0O/A8000000

(2 rows)

SELECT last_archived_wal FROM pg_stat_archiver;
last archived wal

0000000100000000000000A7
(1 row)

FOSDEM PGD
@ DataEgret.com 05 GDay

January 30, 2026

Example (4) - improvements

process—-max=2
archive—async=y
compress—type=zst

/usr/pgsqgl-18/bin/pgbench -n -P 1 -T 60 -7 2 —-c 50

SELECT application_name, sent_lsn, write_1lsn, flush_lsn FROM pg_stat_replication;

application_name | sent _1sn | write_ 1lsn | flush_ 1lsn
—————————————————— -
walreceiver | O/C9B5F610 | O0/C9B5F610 | O/CO9B5AEO0O
pg_receivewal | 0/C9B5F610 | O/BE8D22EO | O0/BEO000OO

(2 rows)

SELECT last_archived_wal FROM pg_stat_archiver;
last _archived wal

0000000100000000000000C7
(1 row)

FOSDEM PGD
@ DataEgret.com 05 GDay

January 30, 2026

Understanding logs

* .rchive-push Console output goes into the PostgreSQL logs

POO INFO: archive-push command begin 2.58.0: [pg_wal/0000000100000000000000C6]

POO INFO: pushed WAL file '0000000100000000000000C6" to the archive asynchronously
P00 INFO: archive—-push command end: completed successfully (639ms)

POO INFO: archive-push command begin 2.58.0: [pg_wal/0000000100000000000000C7]

POO INFO: pushed WAL file '0000000100000000000000C7"'" to the archive asynchronously
P00 INFO: archive-push command end: completed successfully (20ms)

® demo-archive-push-async.log

POO INFO: archive-push:async command begin 2.58.0: [/var/lib/pgsqgl/18/data/pg_wal]

POO INFO: push 2 WAL file(s) to archive: 0000000100000000000000C6...00000001200000000000000C7
P02 DETAIL: pushed WAL file '0000000100000000000000C7"' to the archive

P01 DETAIL: pushed WAL file '0000000100000000000000C6"' to the archive

POO INFO: archive-push:async command end: completed successfully (554ms)

FOSDEM PGDay
DataEgret.com
@ 5 January 30, 2026

Async high-level implementation details

e Create the spool out pathifit does not already exist
e Read .ready filesfrom archive_status
e Remove .ox filesthat are notin the ready list
e Return .ready filesthatarenotinthe .ox list
e Create the parallel executor and run jobs
e On success:
= [og success
= write the status file

FOSDEM PGD
@ DataEgret.com 05 Gbay

January 30, 2026

What can go wrong with archiving?

Things can get worse... and they will!

FOSDEM PGDay

Januar y 30, 2026

WAL segments piling up...

An error prevents PostgreSQL from removing/recycling WAL files!

$ 1ls data/pg_wal/archive_status |grep .ready

00000001000000020000001B.ready
00000001000000020000001C.ready
00000001000000020000001D.ready
00000001000000020000001E.ready

@ DataEgret.com FOSDEM PGDay

January 30, 2026

Archiving queue

® archive-push-queue-max

= maximum size of the PostgreSQL archive queue
» prevents WAL storage from filling up until PostgreSQL stops...
= ...but can create missing archives!

e Monitor archiving to ensure it keeps working

@ DataEgret.com FOSDEM PGDay

January 30, 2026

A very realistic failure chain

e NFS/S3/... hiccup -> archive queue fills
® archive-push-queue-max reached
e PostgreSQL continues -> WAL is recycled
e Backup exists...
e ...but PITR fails due to missing WAL
= a3 new backup is needed!

@ DataEgret.com FOSDEM PGDay

January 30, 2026

Log error example without archive-async

POO INFO: archive-push command begin 2.58.0: [pg_wal/0000000100000001000000E0]

P0OO WARN: dropped WAL file '0000000100000001000000EQ0" because archive queue exceeded 128MB
POO INFO: archive-push command end: completed successfully (8ms)

POO INFO: archive-push command begin 2.58.0: [pg_wal/0000000100000001000000E1]

POO ERROR: [103]: unable to find a valid repository:

P00 INFO: archive-push command end: aborted with exception [103]
LOG: archive command failed with exit code 103

FOSDEM PGD
@ DataEgret.com 05 Gbay

January 30, 2026

Side effect

$ 1ls data/pg_wal/archive_status |grep .ready

0000000100000001000000E1.ready
0000000100000001000000E2.ready
0000000100000001000000E3.ready
0000000100000001000000E4 .ready
0000000100000001000000ESL . ready
0000000100000001000000E6.ready
0000000100000001000000E7 .ready
0000000100000001000000E8.ready

e 3x16MB <=128MB
e Only the oldest WAL file gets purged

DataEgret.com FOSDEM PGDay
January 30, 2026

@ DataEgret.com

POO
POO
POO
POO
POO
POO
POO
POO
POO

POO
POO

POO

LOG:

WARN :
WARN :
WARN :
WARN :
WARN :
WARN :
WARN :
WARN :
WARN :

INFO:
ERROR:

INFO:

Log error example with archive-async

dropped
dropped
dropped
dropped
dropped
dropped
dropped
dropped
dropped

archive—-push command begin 2.58.0:

[103] :

archive—-push command end:

WAL
WAL
WAL
WAL
WAL
WAL
WAL
WAL
WAL

file
file
file
file
file
file
file
file
file

'000000010000000200000001"
'000000010000000200000002"
'000000010000000200000003"
'000000010000000200000004"
'000000010000000200000005"
'000000010000000200000006"
'000000010000000200000007"
'000000010000000200000008"
'000000010000000200000009"

unable to find a valid repository:

archive command failed with exit code 103

FOSDEM PGDay
January 30, 2026

aborted with exception

because
because
because
because
because
because
because
because
because

archive
archive
archive
archive
archive
archive
archive
archive
archive

[103]

queue
queue
queue
queue
queue
queue
queue
queue
queue

exceeded
exceeded
exceeded
exceeded
exceeded
exceeded
exceeded
exceeded
exceeded

[pg_wal/00000001000000020000000A]

128MB
1238MB
128MB
128MB
1238MB
128MB
128MB
128MB
1238MB

Side effect

$ 1ls data/pg_wal/archive_status |grep .ready

00000001000000020000000A . ready
00000001000000020000000B.ready

e The entire 128MB waiting queue gets purged

@ DataEgret.com FOSDEM PGDay

January 30, 2026

Restore: pgBackRest + PostgreSQL

pgBackRest handles the restore;
PostgreSQL handles the recovery!

Let’s talk about restore command and recovery targets...

FOSDEM PGDay

Januar y 30, 2026

Restore type?

e type (and --target to define the target)
m default : end of the WAL archive stream
" immediate : DAckup consistency point
" 1sn: LSN (Log Sequence Number), recovery_target_lsn
" name : restore point, recovery_target_name
m xid:transaction ID, recovery target_xid

B time :timestamp, recovery_target_time

@ DataEgret.com FOSDEM PGDay

January 30, 2026

Backup set

® —-—set
s default: 1atest
» auto-selected for time and 1sn targets

@ DataEgret.com FOSDEM PGDay

January 30, 2026

Timeline

® - —target-timeline

B recovery_target_timeline

m default: 1atest
s useful value: current

@ DataEgret.com FOSDEM PGDay

January 30, 2026

What happens at the target?

® __target-action (recovery_target_action)
" pause : pause when the recovery target is reached
B oromote : promote the instance and switch to a new timeline
" shutdown : Shut down the server

@ DataEgret.com FOSDEM PGDay

January 30, 2026

@ DataEgret.com

Delta mode: restore into an existing PGDATA

e deita (CLI)or deita=y (config)

e Uses checksums to decide what to copy
» Restore: allows restoring into a non-empty data directory
= Backup: uses checksums instead of timestamps

Restore or backup using checksums.

During a restore, by default the PostgreSQL data and tablespace directories
are expected to be present but empty. This option performs a delta restore
using checksums.

During a backup, this option will use checksums instead of timestamps to
determine 1f files will be copied.

FOSDEM PGDay
January 30, 2026

Delta restore is not incremental backup

e Delta restore

n affects how files are copied during restore

= allows restoring into a non-empty data directory

= does not change backup format or WAL requirements
e Incremental backup

» affects how backups are created

m stores only changes since a previous backup

m requires a dependency chain

= notrelatedto ——deita

e __delta backup: uses checksums, not timestamps

@ DataEgret.com FOSDEM PGDay

January 30, 2026

Selective restore

® - -—db-include
s databases not explicitly included are restored as sparse, zeroed files
m system databases are always restored unless explicitly excluded
O (template0 , templatel , postgres)
® - —db-exclude
» excluded databases are restored as sparse, zeroed files
m With —-ab-inciuge , this only applies to system databases

@ DataEgret.com FOSDEM PGDay

January 30, 2026

Example (1)

Name | Size
___________ e
dbl | 1015 MB
db?2 | 3047 MB

dbl=# SELECT pg_create_restore_point ('dont_fear demo_effect');
Pg_create_restore_polnt

4/91FF5B58
(1 row)

dbl=# DELETE FROM pgbench_accounts;
DELETE 6500000

FOSDEM PGD
@ DataEgret.com 05 GDay

January 30, 2026

Example (2) - restore command

$ pgbackrest restore —-—-stanza=demo ——-type=name ——-target='dont_fear demo_effect' —-—db-include=dbl
POO INFO: restore command begin 2.58.0:

POO INFO: repol: restore backup set 20260130-105007F, recovery will start at

POO INFO: write updated /var/lib/pgsqgl/l18/data/postgresqgl.auto.conf

POO INFO: restore global/pg_control

POO INFO: restore size = 4GB, file total = 1603

POO INFO: restore command end: completed successfully

$ cat /var/lib/pgsgl/18/data/postgresqgl.auto.conf

Recovery settings generated by pgBackRest restore on
restore_command = 'pgbackrest —-—stanza=demo archive-get %f "Sp"'
recovery_target_name = 'dont_fear_ demo_effect'

$ du -hs /var/lib/pgsgl/18/data
1.1G /var/lib/pgsgl/18/data

@ DataEgret.com FOSDEM PGDay

January 30, 2026

Example (3) - the result

dbl=# SELECT COUNT (*) FROM pgbench_accounts;
count

6500000
(1 row)

dbl=# \c db2
connection to server on socket "/run/postgresgl/.s.PGSQL.5432" failed:
FATAL: relation mapping file "base/16440/pg_filenode.map" contains invalid data

dbl=# DROP DATABASE db2; —— corrupted after selective restore
DROP DATABASE

@ DataEgret.com FOSDEM PGDay

January 30, 2026

Selective restore summary

e Saves disk space and restore time (not recovery time!)

e pgBackRest restore —-do-inciude With ——type=immediate usually works well

e Selective PITR can work; otherwise, if it does not, a regular restore is required
e Selective restore is an optimization, not a guarantee

@ DataEgret.com FOSDEM PGDay

January 30, 2026

Asynchronously fetch WAL segments

e With archive-get and archive-async=y :
» prefetches up to archive-get-queue-max WAL segments to speed up recovery
B USES process-max WOrkers
m storesthem in spoo1l-patn

@ DataEgret.com FOSDEM PGDay

January 30, 2026

Conclusion

e Tune your archiving (async, compression, concurrency)
e Monitor backups and archives
e Regularly test restores

Schrédinger’s Law of Backups

The condition/state of any backup is unknown until a restore is attempted.

FOSDEM PGD
@ DataEgret.com 05 Gbay

January 30, 2026

Questions?

contact@dataegret.com

DataEgret.com FOSDEM PGDay
January 30, 2026

mailto:contact@dataegret.com

