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Stefan Fercot

e PostgreSQL Expert @Data Egret
» PostgreSQL consulting, support, and training
e pgBackRest contributor and advocate
e Also known as pgstef
e https://pgstef.github.io
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What is pgBackRest?

e Reliable backup and restore tool for PostgreSQL

e Supports local and remote operation (via SSH or TLS)

e Parallel and asynchronous operations

e Works with S3, Azure, GCS, NFS, and other storage backends
e Multiple compression methods ( gz, bz2, 124, zst )

e Supports client-side encryption ( aes—256-cbe )
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pgBackRest: faster WAL archiving, safer restores

e Archiving mechanics
e Restore scenarios
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Archiving: the happy path and the traps

® archive_command VS pg_receivewal (not Supported)
e How can we make archiving faster?
e What can go wrong?




WAL archiving process
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.partial WAL file

e Usually<16MB
e 1o _receivewal behaves like a standby without data files
e .partial ISpushed by the standby server at promotion time
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Example (1)
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Example (2)

archive_command = 'gzip < %p > /shared/archives/%f.gz'
pg_receivewal -D /shared/receivewal ——compress=gzip -V

/usr/pgsql-18/bin/pgbench -1 —-s 65
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Example (3)

S ps —o pid,cmd fx
PID CMD
5461 /usr/pgsgl-18/bin/postgres -D /var/lib/pgsgl/18/data/
5537 \_ postgres: walsender ... streaming 0/34E74D38
5590 \_ postgres: walsender ... streaming 0/34E74D38

S 1ls /shared/archives

000000010000000000000033.9gz

S 1ls /shared/receivewal

000000010000000000000033 .9z
000000010000000000000034.gz.partial
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Example (4)
$ psgql -c "SELECT pg_promote();"
S 1s /shared/archives/

000000010000000000000034.partial.gz
00000002 .history.gz

pg_receivewal Still pointsto the old primary!
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Timelines and .nistory files
A correct restore — PITR or not — always involves a timeline switch.

e When archive recovery completes or a standby is promoted -> new timeline
= encoded in WAL segment file names
= identifies the WAL record series generated after that recovery
s recordedin .nistory files
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Faster archiving?

e Compression types
e Compression level
e Async archiving
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Compression types

e File compression types supported ( compress-—type ):

" bz2 - bzip2
" o: - gzip (default)
" 1z4

= .-t -Zstandard
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Compression level

e When compress-1evel 1S Not specified:
m defaults to values based on compress-type
0 pz2 .9
0 gz .6
0 1z4:1

O zst 3
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Async archiving

e With archive—async=y .
» temporary data (acknowledgments) stored in spoo1-path
» early archiving with process-max workers
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Example (1) - initial state

SELECT application_name, sent_lsn, write_1lsn, flush_lsn FROM pg_stat_replication;

application_name | sent _1sn | write 1lsn | flush 1lsn
—————————————————— e
walreceiver | 0/34E74D38 | 0/34E74D38 | 0/34E74D38
pPg_receivewal | 0/34E74D38 | 0/34E74D38 | 0/34000000

(2 rows)

SELECT last_archived_wal FROM pg_stat_archiver;
last archived wal

000000010000000000000033
(1 row)
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Example (2) - archiving too slow
/usr/pgsql-18/bin/pgbench -n -P 1 -T 60 -7 2 —-c 50

SELECT application_name, sent_lsn, write_1lsn, flush_lsn FROM pg_stat_replication;

application_name | sent _1sn | write 1lsn | flush 1lsn
—————————————————— -
walreceiver | 0/67F3CE30 | 0/67F33830 | 0/67F0D558
pPg_receivewal | 0/67F3CE30 | 0/62780B38 | 0/62000000

(2 rows)

SELECT last_archived_wal FROM pg_stat_archiver;
last archived wal

000000010000000000000048
(1 row)
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Example (3) - final state

SELECT application_name, sent_lsn, write_1lsn, flush_lsn FROM pg_stat_replication;

application_name | sent _1sn | write 1lsn | flush 1lsn
—————————————————— e
walreceiver | 0/A82E1770 | O/A82E1770 | O/A82E1770
pPg_receivewal | 0/A82E1770 | O/A82E1770 | 0O/A8000000

(2 rows)

SELECT last_archived_wal FROM pg_stat_archiver;
last archived wal

0000000100000000000000A7
(1 row)
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Example (4) - improvements

process—-max=2
archive—async=y
compress—type=zst

/usr/pgsqgl-18/bin/pgbench -n -P 1 -T 60 -7 2 —-c 50

SELECT application_name, sent_lsn, write_1lsn, flush_lsn FROM pg_stat_replication;

application_name | sent _1sn | write_ 1lsn | flush_ 1lsn
—————————————————— -
walreceiver | O/C9B5F610 | O0/C9B5F610 | O/CO9B5AEO0O
pg_receivewal | 0/C9B5F610 | O/BE8D22EO | O0/BEO000OO

(2 rows)

SELECT last_archived_wal FROM pg_stat_archiver;
last _archived wal

0000000100000000000000C7
(1 row)
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Understanding logs

* .rchive-push Console output goes into the PostgreSQL logs

POO INFO: archive-push command begin 2.58.0: [pg_wal/0000000100000000000000C6]

POO INFO: pushed WAL file '0000000100000000000000C6" to the archive asynchronously
P00 INFO: archive—-push command end: completed successfully (639ms)

POO INFO: archive-push command begin 2.58.0: [pg_wal/0000000100000000000000C7]

POO INFO: pushed WAL file '0000000100000000000000C7"'" to the archive asynchronously
P00 INFO: archive-push command end: completed successfully (20ms)

® demo-archive-push-async.log

POO INFO: archive-push:async command begin 2.58.0: [/var/lib/pgsqgl/18/data/pg_wal]

POO INFO: push 2 WAL file(s) to archive: 0000000100000000000000C6...00000001200000000000000C7
P02 DETAIL: pushed WAL file '0000000100000000000000C7"' to the archive

P01 DETAIL: pushed WAL file '0000000100000000000000C6"' to the archive

POO INFO: archive-push:async command end: completed successfully (554ms)
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Async high-level implementation details

e Create the spool out pathifit does not already exist
e Read .ready filesfrom archive_status
e Remove .ox filesthat are notin the ready list
e Return .ready filesthatarenotinthe .ox list
e Create the parallel executor and run jobs
e On success:
= [og success
= write the status file
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What can go wrong with archiving?

Things can get worse... and they will!
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WAL segments piling up...

An error prevents PostgreSQL from removing/recycling WAL files!

$ 1ls data/pg_wal/archive_status |grep .ready

00000001000000020000001B.ready
00000001000000020000001C.ready
00000001000000020000001D.ready
00000001000000020000001E.ready
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Archiving queue

® archive-push-queue-max

= maximum size of the PostgreSQL archive queue
» prevents WAL storage from filling up until PostgreSQL stops...
= ...but can create missing archives!

e Monitor archiving to ensure it keeps working
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A very realistic failure chain

e NFS/S3/... hiccup -> archive queue fills
® archive-push-queue-max reached
e PostgreSQL continues -> WAL is recycled
e Backup exists...
e ...but PITR fails due to missing WAL
= a3 new backup is needed!
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Log error example without archive-async

POO INFO: archive-push command begin 2.58.0: [pg_wal/0000000100000001000000E0]

P0OO WARN: dropped WAL file '0000000100000001000000EQ0" because archive queue exceeded 128MB
POO INFO: archive-push command end: completed successfully (8ms)

POO INFO: archive-push command begin 2.58.0: [pg_wal/0000000100000001000000E1]

POO ERROR: [103]: unable to find a valid repository:

P00 INFO: archive-push command end: aborted with exception [103]
LOG: archive command failed with exit code 103
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Side effect

$ 1ls data/pg_wal/archive_status |grep .ready

0000000100000001000000E1.ready
0000000100000001000000E2.ready
0000000100000001000000E3.ready
0000000100000001000000E4 .ready
0000000100000001000000ESL . ready
0000000100000001000000E6.ready
0000000100000001000000E7 .ready
0000000100000001000000E8.ready

e 3x16MB <=128MB
e Only the oldest WAL file gets purged
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POO
POO
POO
POO
POO
POO
POO
POO
POO

POO
POO

POO

LOG:

WARN :
WARN :
WARN :
WARN :
WARN :
WARN :
WARN :
WARN :
WARN :

INFO:
ERROR:

INFO:

Log error example with archive-async

dropped
dropped
dropped
dropped
dropped
dropped
dropped
dropped
dropped

archive—-push command begin 2.58.0:

[103] :

archive—-push command end:

WAL
WAL
WAL
WAL
WAL
WAL
WAL
WAL
WAL

file
file
file
file
file
file
file
file
file

'000000010000000200000001"
'000000010000000200000002"
'000000010000000200000003"
'000000010000000200000004"
'000000010000000200000005"
'000000010000000200000006"
'000000010000000200000007"
'000000010000000200000008"
'000000010000000200000009"

unable to find a valid repository:

archive command failed with exit code 103
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aborted with exception

because
because
because
because
because
because
because
because
because

archive
archive
archive
archive
archive
archive
archive
archive
archive

[103]

queue
queue
queue
queue
queue
queue
queue
queue
queue

exceeded
exceeded
exceeded
exceeded
exceeded
exceeded
exceeded
exceeded
exceeded

[pg_wal/00000001000000020000000A]

128MB
1238MB
128MB
128MB
1238MB
128MB
128MB
128MB
1238MB



Side effect

$ 1ls data/pg_wal/archive_status |grep .ready

00000001000000020000000A . ready
00000001000000020000000B.ready

e The entire 128MB waiting queue gets purged
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Restore: pgBackRest + PostgreSQL

pgBackRest handles the restore;
PostgreSQL handles the recovery!

Let’s talk about restore command and recovery targets...
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Restore type?

e type (and --target to define the target)
m default : end of the WAL archive stream
" immediate : DAckup consistency point
" 1sn: LSN (Log Sequence Number), recovery_target_lsn
" name : restore point, recovery_target_name
m xid:transaction ID, recovery target_xid

B time :timestamp, recovery_target_time
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Backup set

® —-—set
s default: 1atest
» auto-selected for time and 1sn targets
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Timeline

® - —target-timeline

B recovery_target_timeline

m default: 1atest
s useful value: current
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What happens at the target?

® __target-action ( recovery_target_action )
" pause : pause when the recovery target is reached
B oromote : promote the instance and switch to a new timeline
" shutdown : Shut down the server
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Delta mode: restore into an existing PGDATA

e deita (CLI)or deita=y (config)

e Uses checksums to decide what to copy
» Restore: allows restoring into a non-empty data directory
= Backup: uses checksums instead of timestamps

Restore or backup using checksums.

During a restore, by default the PostgreSQL data and tablespace directories
are expected to be present but empty. This option performs a delta restore
using checksums.

During a backup, this option will use checksums instead of timestamps to
determine 1f files will be copied.
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Delta restore is not incremental backup

e Delta restore

n affects how files are copied during restore

= allows restoring into a non-empty data directory

= does not change backup format or WAL requirements
e Incremental backup

» affects how backups are created

m stores only changes since a previous backup

m requires a dependency chain

= notrelatedto ——deita

e __delta backup: uses checksums, not timestamps
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Selective restore

® - -—db-include
s databases not explicitly included are restored as sparse, zeroed files
m system databases are always restored unless explicitly excluded
O ( template0 , templatel , postgres )
® - —db-exclude
» excluded databases are restored as sparse, zeroed files
m With —-ab-inciuge , this only applies to system databases
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Example (1)

Name | Size
___________ e
dbl | 1015 MB
db?2 | 3047 MB

dbl=# SELECT pg_create_restore_point ('dont_fear demo_effect');
Pg_create_restore_polnt

4/91FF5B58
(1 row)

dbl=# DELETE FROM pgbench_accounts;
DELETE 6500000
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Example (2) - restore command

$ pgbackrest restore —-—-stanza=demo ——-type=name ——-target='dont_fear demo_effect' —-—db-include=dbl
POO INFO: restore command begin 2.58.0:

POO INFO: repol: restore backup set 20260130-105007F, recovery will start at

POO INFO: write updated /var/lib/pgsqgl/l18/data/postgresqgl.auto.conf

POO INFO: restore global/pg_control

POO INFO: restore size = 4GB, file total = 1603

POO INFO: restore command end: completed successfully

$ cat /var/lib/pgsgl/18/data/postgresqgl.auto.conf

# Recovery settings generated by pgBackRest restore on
restore_command = 'pgbackrest —-—stanza=demo archive-get %f "Sp"'
recovery_target_name = 'dont_fear_ demo_effect'

$ du -hs /var/lib/pgsgl/18/data
1.1G /var/lib/pgsgl/18/data
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Example (3) - the result

dbl=# SELECT COUNT (*) FROM pgbench_accounts;
count

6500000
(1 row)

dbl=# \c db2
connection to server on socket "/run/postgresgl/.s.PGSQL.5432" failed:
FATAL: relation mapping file "base/16440/pg_filenode.map" contains invalid data

dbl=# DROP DATABASE db2; —— corrupted after selective restore
DROP DATABASE
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Selective restore summary

e Saves disk space and restore time (not recovery time!)

e pgBackRest restore —-do-inciude With ——type=immediate usually works well

e Selective PITR can work; otherwise, if it does not, a regular restore is required
e Selective restore is an optimization, not a guarantee
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Asynchronously fetch WAL segments

e With archive-get and archive-async=y :
» prefetches up to archive-get-queue-max WAL segments to speed up recovery
B USES process-max WOrkers
m storesthem in spoo1l-patn

@ DataEgret.com FOSDEM PGDay

January 30, 2026



Conclusion

e Tune your archiving (async, compression, concurrency)
e Monitor backups and archives
e Regularly test restores

Schrédinger’s Law of Backups

The condition/state of any backup is unknown until a restore is attempted.
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Questions?

contact@dataegret.com

DataEgret.com FOSDEM PGDay
January 30, 2026


mailto:contact@dataegret.com

