
DevDay Belgium
November 13, 2025

Stefan FERCOT

contact@dataegret.com

The art of data retention in PostgreSQL

1



DevDay Belgium
November 13, 2025 2



DevDay Belgium
November 13, 2025

DataEgret.com

Stefan Fercot
PostgreSQL Expert @Data Egret

PostgreSQL consulting, support, and training
pgBackRest contributor and advocate
Recognized PostgreSQL significant contributor
Also known as pgstef
https://pgstef.github.io

3

https://pgstef.github.io/


DevDay Belgium
November 13, 2025

DataEgret.com

The art of data retention in PostgreSQL

Balancing performance, cost, and discipline in growing databases

4



DevDay Belgium
November 13, 2025

DataEgret.com

Every database starts small
A few tables
A few thousand rows
A mix of tests and early production traffic

5



DevDay Belgium
November 13, 2025

DataEgret.com

The calm before the storm
Everything still fitted in memory
Everything was fast
Nobody was worried

6



DevDay Belgium
November 13, 2025

DataEgret.com

Six months later

7



DevDay Belgium
November 13, 2025

DataEgret.com

The hidden cost of big tables
More data to scan, even with indexes
VACUUM and autovacuum become heavier
Cache efficiency drops
Backups and replication slow down
Higher risk of downtime 🔥

8



DevDay Belgium
November 13, 2025

DataEgret.com

How can we save disk space when data grows?
Data always grows faster than we expect
Can PostgreSQL compress our way out of this?

9



DevDay Belgium
November 13, 2025

DataEgret.com

Compression: the first idea
PostgreSQL does have a form of compression: TOAST
But TOAST is not a traditional compression system

TOAST = The Oversized Attribute Storage Technique
It exists to handle large values that do not fit in a page

10



DevDay Belgium
November 13, 2025

DataEgret.com

How PostgreSQL stores data
PostgreSQL stores data in fixed-size pages (8 KB by default)
If a row value is too large to fit in that page, TOAST comes in

11



DevDay Belgium
November 13, 2025

DataEgret.com

What TOAST does
Compresses large values using an internal algorithm
If still too big, moves them to a TOAST table ( pg_toast_XXX )
The main table stores only a pointer instead of the full data

12



DevDay Belgium
November 13, 2025

DataEgret.com

TOAST and compression
Default: pglz
Recommended: lz4

Faster in most cases
Similar compression ratio

How to enable lz4 :
default_toast_compression = 'lz4';

or ALTER TABLE t1 ALTER COLUMN c2 SET COMPRESSION lz4;

13



DevDay Belgium
November 13, 2025

DataEgret.com

Example

Table Rows Size

compress_lz4 1,000,000 710 MB

compress_pglz 1,000,000 1.9 GB

CREATE TABLE compress_lz4 (

    id        serial PRIMARY KEY,

    details   text COMPRESSION lz4

);

INSERT INTO compress_lz4 (details)

SELECT

    repeat(md5(random()::text), 5000)  -- ~160 KB strings

FROM generate_series(1, 1_000_000) i;

14



DevDay Belgium
November 13, 2025

DataEgret.com

Why compression alone is not enough
Only helps for big text, JSONB, or bytea columns
Does nothing for regular numeric or short text data
Does not control table growth or vacuum overhead
You still need to manage what stays and what goes

Compression saves bytes, not discipline.

15



DevDay Belgium
November 13, 2025

DataEgret.com

From chaos to structure

16



DevDay Belgium
November 13, 2025

DataEgret.com

The real path: data retention
1. The problem: data keeps growing
2. Principles: classify data and plan retention
3. Techniques: partitioning, archiving
4. The way of the database: discipline and foresight

17



DevDay Belgium
November 13, 2025

DataEgret.com

Not all data is equal
+-------------------+      +----------------------+      +--------------------+

|   CRITICAL DATA   | ---> |   OPERATIONAL DATA   | ---> |   DISPOSABLE DATA  |

|   Keep & Back Up  |      |   Retain or Export   |      |   Recycle 🗑️       |

+-------------------+      +----------------------+      +--------------------+

18



DevDay Belgium
November 13, 2025

DataEgret.com

Defining data lifecycles
Decide how long to keep each data type
Define where it goes when it becomes old
Set clear rules for safe deletion
Keep only what is useful or required

19



DevDay Belgium
November 13, 2025

DataEgret.com

Case study: an e-commerce platform
+------------------------------------+

|         Main PostgreSQL DB         |

|------------------------------------|

| Orders / Users / Payments          | ---> [ Partitioned ]

| Shopping Carts (≤ 60 days)         | ---> [ Delete after 60 days ]

| Audit Logs (raw ≤ 7 days)          | ---> [ Aggregate & move ] --+--> [ ClickHouse / DWH ]

+------------------------------------+                              \-> [ S3 (Parquet) ]

20



DevDay Belgium
November 13, 2025

DataEgret.com

Partitioning in PostgreSQL
Helps with:

Faster queries on recent or relevant data
Easier clean-up

Drop old partitions instead of running large DELETEs
Reduced bloat and lower VACUUM overhead

21



DevDay Belgium
November 13, 2025

DataEgret.com

Declarative partitioning
Partitioned table

Defines only the structure
Indexes and constraints are automatically propagated to partitions

Partitions
Each partition is a regular table and can be queried directly
Supports default partitions
Sub-partitions are also supported
Partitions can be attached or detached

https://www.postgresql.org/docs/current/ddl-partitioning.html

22

https://www.postgresql.org/docs/current/ddl-partitioning.html


DevDay Belgium
November 13, 2025

DataEgret.com

List partitioning
The table is divided into partitions by listing specific key values
Each partition contains rows matching those values
The partition key must be a single column

23



DevDay Belgium
November 13, 2025

DataEgret.com

Example

CREATE TABLE customers (

  id serial,

  country text,

  name text

) PARTITION BY LIST (country);

CREATE TABLE customers_eu PARTITION OF customers FOR VALUES IN ('FR', 'DE', 'ES');

CREATE TABLE customers_us PARTITION OF customers FOR VALUES IN ('US', 'CA');

CREATE TABLE customers_other PARTITION OF customers DEFAULT;

24



DevDay Belgium
November 13, 2025

DataEgret.com

Hash partitioning
Distributes data evenly across partitions
Uses a modulus and remainder to decide where each row goes
Each partition holds rows where hash(key) % modulus = remainder

25



DevDay Belgium
November 13, 2025

DataEgret.com

Example

CREATE TABLE customers (

  id serial,

  country text,

  name text

) PARTITION BY HASH (country);

CREATE TABLE customers_p0 PARTITION OF customers FOR VALUES WITH (modulus 3, remainder 0);

CREATE TABLE customers_p1 PARTITION OF customers FOR VALUES WITH (modulus 3, remainder 1);

CREATE TABLE customers_p2 PARTITION OF customers FOR VALUES WITH (modulus 3, remainder 2);

26



DevDay Belgium
November 13, 2025

DataEgret.com

Range partitioning
The table is divided into ranges based on one or more key columns
Each range must be unique and cannot overlap with another
Range bounds are inclusive at the lower end and exclusive at the upper end
Use MINVALUE  or MAXVALUE  for open-ended ranges

27



DevDay Belgium
November 13, 2025

DataEgret.com

Example

-- Create the parent table and define range partitioning on order_date

CREATE TABLE orders (

  order_id      bigint GENERATED BY DEFAULT AS IDENTITY,

  customer_id   bigint NOT NULL,

  order_date    date NOT NULL,

  total_amount  numeric NOT NULL,

  PRIMARY KEY (order_date, order_id)

) PARTITION BY RANGE (order_date);

-- Create monthly partitions for Q1 2025

CREATE TABLE orders_2025_01 PARTITION OF orders

  FOR VALUES FROM ('2025-01-01') TO ('2025-02-01');

CREATE TABLE orders_2025_02 PARTITION OF orders

  FOR VALUES FROM ('2025-02-01') TO ('2025-03-01');

CREATE TABLE orders_2025_03 PARTITION OF orders

  FOR VALUES FROM ('2025-03-01') TO ('2025-04-01');

-- Create an index on the parent table (simple, not concurrent)

CREATE INDEX orders_customer_id_idx ON orders (customer_id);

28



DevDay Belgium
November 13, 2025

DataEgret.com

The benefits of partitioning
Faster queries
Easier clean-up
Better long-term performance

“Partitions follow your business logic: by month, by region, by customer,
making data easier to manage and maintain.”

29



DevDay Belgium
November 13, 2025

DataEgret.com

But old data never leaves on its own
Old partitions are:

Still on disk
Still vacuumed
Still backed up
Still costing money

30



DevDay Belgium
November 13, 2025

DataEgret.com

Cleaning up old partitions
Old partitions can be:

Exported
Detached
Dropped

-- Option 1: Export with COPY

COPY orders_2025_01 TO '/archive/orders_2025_01.csv' CSV;

-- Option 2: Export with pg_dump

pg_dump -Fc -Z 3 -t orders_2025_01 yourdb > orders_2025_01.sql

-- Detach or drop after export

ALTER TABLE orders DETACH PARTITION orders_2025_01 CONCURRENTLY;

DROP TABLE orders_2025_01;

31



DevDay Belgium
November 13, 2025

DataEgret.com

What about less active but still
accessible data

Keep it accessible, just not on your fastest storage
Common approaches:

Separate PostgreSQL tablespace
Separate PostgreSQL instance
External object storage (for example, S3 or Azure Blob)
Data warehouse (for example, ClickHouse or BigQuery)

32



DevDay Belgium
November 13, 2025

DataEgret.com

Option A: another tablespace in the same cluster
Move older partitions to slower or cheaper disks
Queries still use the same tables and indexes
Requires minimal application changes

-- Create a tablespace on cheaper storage

CREATE TABLESPACE orders_archive LOCATION '/mnt/archive/pg';

-- Move a partition to the archive tablespace

ALTER TABLE orders_2025_02 SET TABLESPACE orders_archive;

33



DevDay Belgium
November 13, 2025

DataEgret.com

Understanding tablespaces
Physical storage for database objects (not a logical concept)
Represented by a normal directory outside PGDATA, linked symbolically
Common use cases:

Distributing I/O load and data volume
Enforcing storage quotas via the filesystem
Isolating temporary or sorting operations

34



DevDay Belgium
November 13, 2025

DataEgret.com

Option B: external archiving
| FDW          | Reads from                      | Example use case                      |

|--------------|---------------------------------|---------------------------------------|

| file_fdw     | CSV or TSV files                | Logs and simple exports               |

| postgres_fdw | Other PostgreSQL databases      | Cross-database archiving or reporting |

| pg_parquet   | Parquet with S3, GCS, or Azure  | Object storage                        |

| pg_lake      | Parquet, CSV, JSON, Iceberg     | Analytics and AI workloads            |

CREATE FOREIGN TABLE hits ()

SERVER pg_lake options (path 'az://your_container_name/hits.parquet');

SELECT count(*) FROM hits;

35



DevDay Belgium
November 13, 2025

DataEgret.com

Putting it together: a simple retention workflow
Keep: data that is legally or operationally required
Move: less active data to slower or cheaper storage
Archive: historical data that should live outside PostgreSQL
Drop: data that is no longer needed and safe to remove

36



DevDay Belgium
November 13, 2025

DataEgret.com

Automating retention policies
Define a clear retention period per table or dataset (for example, 12 months)
Always archive before dropping data (export or offload)
Monitor logs or alerts to track when partitions are removed
Test automation in staging before running it in production

37



DevDay Belgium
November 13, 2025

DataEgret.com

Tools for automation
Tool Purpose

pg_partman Automatically create and drop partitions based on time or ID

pg_cron / cron Schedule SQL tasks and scripts

pg_timetable PostgreSQL-native job scheduler with advanced workflows

COPY /
pg_dump

Export data before dropping

38



DevDay Belgium
November 13, 2025

DataEgret.com

Production pitfalls to avoid
Operation Common issue

ALTER TABLE ... SET 

COMPRESSION

No effect on existing data unless the table is
rewritten (e.g. with CLUSTER )

Rewriting large tables CPU-intensive; run during off-hours

Index without
CONCURRENTLY

Blocks reads and writes; can block traffic

Too many partitions Slows query planning and autovacuum

Dropping large partitions May cause locks or replication lag

39



DevDay Belgium
November 13, 2025

DataEgret.com

The way of the database
Where to go from here:

1. Understand your data
2. Partition what grows continuously
3. Set retention rules: delete or archive
4. Automate lifecycle tasks
5. Monitor and adjust over time

40



DevDay Belgium
November 13, 2025

DataEgret.com

Discipline is scalability

Data retention is not about deletion; it is about preserving what truly matters.

“Like the code of Bushido, discipline brings freedom.
Freedom from chaos, slow queries, and sleepless nights.”

41



DevDay Belgium
November 13, 2025

DataEgret.com

Questions and feedback

 

contact@dataegret.com

Need some help with PostgreSQL? ;-)
Get in touch with Data Egret to talk about PostgreSQL

and, in particular, about training.

42

https://openfeedback.io/devday2025/2025-11-13/969123
https://openfeedback.io/devday2025/2025-11-13/969123
mailto:contact@dataegret.com


DevDay Belgium
November 13, 2025

DataEgret.com

Bonus appendix
Partitioning an existing table
Indexing partitioned tables
Creating and using tablespaces
Automating retention with pg_cron

43



DevDay Belgium
November 13, 2025

DataEgret.com

Partitioning an existing table
1. Create an empty partitioned copy
2. Add a trigger to sync new inserts, updates, and deletes
3. Backfill data in safe batches
4. Build indexes concurrently if needed
5. Switch over in a single transaction

44



DevDay Belgium
November 13, 2025

DataEgret.com

Partitioning an existing table (Adyen approach)
1. Rename the original table as a mammoth partition
2. Create a new parent partitioned table with the original name
3. Add the mammoth table as the first child
4. Create empty replacement partitions
5. Backfill data into the new partitions in safe batches
6. Detach the mammoth and attach the new partitions
7. Validate constraints afterwards if needed

Adyen: Efficiently RePartitioning Large Tables in PostgreSQL

45

https://www.adyen.com/knowledge-hub/efficiently-repartitioning-large-tables-in-postgresql


DevDay Belgium
November 13, 2025

DataEgret.com

Indexing partitioned tables
Index on the parent table:

Automatically applies to all partitions (existing and future)
Cannot be created concurrently, which can block reads and writes

CREATE INDEX ON orders (customer_id);

46



DevDay Belgium
November 13, 2025

DataEgret.com

Indexing partitions manually
Manual control with ON ONLY :

Skips automatic propagation
Allows per-partition indexes to be created concurrently

CREATE INDEX ON ONLY orders (customer_id);

CREATE INDEX CONCURRENTLY ON orders_2025_01 (customer_id);

ALTER INDEX orders_customer_id_idx

  ATTACH PARTITION orders_2025_01_customer_id_idx;

47



DevDay Belgium
November 13, 2025

DataEgret.com

Example: indexing range partitions

-- Define the index on the parent "ONLY"

CREATE INDEX orders_customer_id_idx ON ONLY orders (customer_id);

-- Create the indexes on each existing partition CONCURRENTLY

CREATE INDEX CONCURRENTLY orders_2025_01_customer_id_idx ON orders_2025_01 (customer_id);

CREATE INDEX CONCURRENTLY orders_2025_02_customer_id_idx ON orders_2025_02 (customer_id);

CREATE INDEX CONCURRENTLY orders_2025_03_customer_id_idx ON orders_2025_03 (customer_id);

-- Attach the per-partition indexes to the parent index

ALTER INDEX orders_customer_id_idx ATTACH PARTITION orders_2025_01_customer_id_idx;

ALTER INDEX orders_customer_id_idx ATTACH PARTITION orders_2025_02_customer_id_idx;

ALTER INDEX orders_customer_id_idx ATTACH PARTITION orders_2025_03_customer_id_idx;

-- Tip: once the parent partitioned index exists,

-- any new partition you create will automatically receive a matching child index.

48



DevDay Belgium
November 13, 2025

DataEgret.com

Creating and using tablespaces
-- Create a new tablespace

CREATE TABLESPACE ssd LOCATION '/mnt/ssd/pg';

-- Assign it to a database

CREATE DATABASE mydb TABLESPACE ssd;

ALTER DATABASE mydb SET default_tablespace TO ssd;

-- Assign it to a specific table

CREATE TABLE some_table (...) TABLESPACE ssd;

-- Move an existing table (requires an exclusive lock)

ALTER TABLE some_table SET TABLESPACE ssd;

49



DevDay Belgium
November 13, 2025

DataEgret.com

Automating retention with pg_cron
Automatically:

Detach old partitions (older than 12 months)
Export to /archive
Drop from the live database

Scheduled with:

-- Schedule a nightly job at 03:00

SELECT cron.schedule(

  job_name   => 'detach_export_drop_old_partitions',

  schedule   => '0 3 * * *',

  command    => 'CALL detach_export_drop_old_partitions();'

);

50



DevDay Belgium
November 13, 2025

DataEgret.com

Example: procedure to export and prune old partitions

CREATE OR REPLACE PROCEDURE detach_export_drop_old_partitions ()

LANGUAGE plpgsql

AS $$

DECLARE

  part RECORD;

BEGIN

  FOR part IN

    SELECT tablename FROM pg_tables

    WHERE schemaname = 'public' AND tablename LIKE 'orders_20%%'

    AND tablename < to_char(current_date - interval '12 months', '"orders_"YYYY_MM')

  LOOP

    RAISE LOG 'Retention: handling %', part.tablename;

    -- 1) Detach from the parent table

    EXECUTE format('ALTER TABLE orders DETACH PARTITION %I;', part.tablename);

    -- 2) Export the partition to CSV (server-side path)

    EXECUTE format('COPY %I TO ''/archive/%I.csv'' WITH CSV HEADER;', part.tablename, part.tablename);

    -- 3) Drop the detached table

    EXECUTE format('DROP TABLE IF EXISTS %I CASCADE;', part.tablename);

  END LOOP;

END;

$$;

51


