PgBouncer at scale
Multi-instance setup

data egret Stefan FERCOT

Your remote PostgreSQL DBA team Stefa N .fe rCOt@d ata egret. com

Securing your PostgreSQL database availability and high performance.

e Performance audit

e Backup & restore

e Migration

e Cloud Cost Management
e Architecture review

e DataOps/ CDC projects

e 24/7 Incident support

on premises & cloud

EXPERTISE DEVELOPMENT TAILORED APPROACH COMMUNITY

Senior DBA team with Involved in new Dedicated DBA team that Recognised significant
10+ years of PostgreSQL feature and extension focused on success of your contributing sponsor
experience each. development. project. to PostgreSQL.

Stefan Fercot

e PostgreSQL Expert @Data Egret
e pgBackRest contributor

e aka. pgstef

e https://pgstef.github.io

b

PGDay Lowlands

September 2025

https://pgstef.github.io/

PgBouncer at scale
Multi-instance setup

Rings a bell?

J0M -

20M -
Sessions {5 -

1.0 M

500.0 K -

e 5 4 L A A A L &

PGDay Lowlands

September 2025

Kudos

Peter Eisentraut

PGDay Lowlands

September 2025

https://www.enterprisedb.com/blog/running-multiple-pgbouncer-instances-systemd

Today’s agenda

e Why PgBouncer?

e Running multiple instances
e Query cancellation

e Example config

e Lessons learned

PGDay Lowlands

September 2025

Why use PgBouncer?

e Connections are expensive -> pooling helps
e Centralized connections control
e Protects clients from disconnections:

m Restarts (upgrades / failovers)

= Connection spikes or saturation

PGDay Lowlands

September 2025

Drawbacks of connection pooling

e Feature limitations depending on the pooling mode
e Potential performance issues if misconfigured:
= Latency overhead or throughput bottlenecks
e Authentication handling can be tricky
e Adds complexity to the architecture
e Single Point of Failure (SPOF) if not redundant

PGDay Lowlands

September 2025

Why scale PgBouncer?

Clients —-——> [PgBouncer] ——--> PostgreSQL
(1 core)

e PgBouncer is a single-threaded process -> one CPU only

e Oneinstance can handle ~10k connections (~1k active)

e Limits vary with config and amount of data fetched

e For higher loads: adjust system limits or run multiple instances!

PGDay Lowlands

September 2025

Running more than one PgBouncer

Clients —---> [PgBouncer #1] —--\
-——> [PgBouncer #2] —-——+--> PostgreSQL
-——> [PgBouncer #3] ——/
(kernel load balance)

e Run multiple PgBouncer instances in parallel
e Each listens on the same port, kernel distributes traffic
e Requires Linux so_reuseport SOcket option

PGDay Lowlands

September 2025

https://lwn.net/Articles/542629/

The query cancellation problem

Cancel request

\Y%
[PgBouncer #1] (doesn't own session) ———> fails
[PgBouncer #2] (owns session) ———> should cancel

e PostgreSQL supports query cancellation (pg_cancel vackend())
m Via cancelrequest Message sentin separated connection

e With multiple PgBouncers, requests may hit the wrong instance

e If that instance doesn’t own the connection -> cancellation fails

e https://dataegret.com/2024/08/handling_cancellation_request/

PGDay Lowlands

September 2025

https://dataegret.com/2024/08/handling_cancellation_request/

PgBouncer peering

Cancel request

v
[PgBouncer #1] ——-forwards—-—-> [PgBouncer #2] —-—-—-> PostgreSQL

e Solution: use the PgBouncer peering feature

e Configure [peers] section+ peer_ia foreach instance

e Each PgBouncer knows its siblings and forwards cancellations
e Ensures cancel requests reach the correct process

PGDay Lowlands

September 2025

https://www.pgbouncer.org/config.html#section-peers

Example setup

e Use reuserort=true in systemd socket unit
e Set peer_ia ineach PgBouncer config
e All instances share port 6432
e PostgreSQL server: nost=postgres0 port=5432
e Unix sockets:

® /run/postgresgl/.s.PGSQL.10001 ,

B /run/postgresgl/.s.PGSQL.10002

PGDay Lowlands

September 2025

PgBouncer peer 1 configuration

/etc/pgbouncer/pgbouncer—-10001.1ini

[databases]
testdb = host=postgres0 port=5432 dbname=testdb

[peers]
1 = host=/run/postgresqgl port=10001
2 = host=/run/postgresgl port=10002

[pgbouncer]

listen addr = 0.0.0.0
listen_port = 6432
peer_1id = 1

PGDay Lowlands

September 2025

PgBouncer peer 2 configuration

/etc/pgbouncer/pgbouncer—-10002.1ini

[databases]
testdb = host=postgres0 port=5432 dbname=testdb

[peers]
1 = host=/run/postgresqgl port=10001
2 = host=/run/postgresgl port=10002

[pgbouncer]

listen addr = 0.0.0.0
listen_port = 6432
peer_1id = 2

PGDay Lowlands

September 2025

systemd service unit template

/etc/systemd/system/pgbouncer@.service

[Unit]

Description=connection pooler for PostgreSQL (%1i)
After=network.target
Requires=pgbouncer@%1i.socket

[Service]

Type=notify

User=postgres

ExecStart=/bin/pgbouncer /etc/pgbouncer/pgbouncer-%i.ini
ExecReload=/bin/kill —-HUP SMAINPID

KillSignal=SIGINT

[Install]
WantedBy=multili—-user.target

PGDay Lowlands

September 2025

systemd socket unit

/etc/systemd/system/pgbouncer@. socket

[Unit]
Description=sockets (%1) for PgBouncer

[Socket]

ListenStream=0.0.0.0:6432
ListenStream=0.0.0.0:%1
ListenStream=/run/postgresgl/.s.PGSQL.%1
ReusePort=true

[Install]
WantedBy=sockets.target

PGDay Lowlands

September 2025

Activate the PgBouncer sockets

$ sudo systemctl enable ——now pgbouncer@l10001.socket
$ sudo systemctl enable —-now pgbouncer@l10002.socket

$ sudo systemctl list-sockets | grep pgbouncer

0.0.0.0:10001 pgbouncer@10001.socket pgbouncer@10001.service
0.0.0.0:10002 pgbouncer@l10002.socket pgbouncer@10002.service
0.0.0.0:6432 pgbouncer@10002.socket pgbouncer@10002.service
0.0.0.0:6432 pgbouncer@10001.socket pgbouncer@10001.service
/run/postgresqgl/.s.PGSQL.10001 pgbouncer@10001.socket pgbouncer@l10001.service
/run/postgresqgl/.s.PGSQL.10002 pgbouncer@10002.socket pgbouncer@10002.service

PGDay Lowlands

September 2025

Minimizing downtime

Clients ——paused—-—> PgBouncer ——-queries walt—-—-> PostgreSQL

e How to route traffic and avoid downtime during the maintenance task?
= No need to drop client traffic
s Use PgBouncer rruse and resuue
e Useful for:
= Failovers
= Rolling upgrades
» Tips and tools for minimal downtime in PostgreSQL upgrades

S psql -U pgbouncer -p 10001 -c "PAUSE;"
$ psgl -U pgbouncer -p 10001 -c "RESUME;"

PGDay Lowlands

September 2025

https://pgstef.github.io/talks/en/20250506_pgconfBE_minimal-downtime-in-PostgreSQL-upgrades.pdf

Lessons learned

Scale—-up path:
2 1nstances —-> 4 -> 8
Watch CPU & connections per core

e Start small and scale gradually

e Monitor connection distribution (kernel load balancing is not always even)
e More processes = more configs + logs to manage

e Keep PgBouncer and PostgreSQL logs separated

e Tune uiinit and system-level connection limits

e Use multiple instances + peer_ia to avoid SPOF

PGDay Lowlands

September 2025

Conclusion

e PgBouncer =most mature and widely used PostgreSQL pooler
= Homepage: https://www.pgbouncer.org/
m Sources: https://github.com/pgbouncer/pgbouncer
e Scales beyond single-core with multi-instance setup
s SO_REUSEPORT + systemd make it simple
» Peering fixes cancellation issues
= PAUSE/RESUME minimizes downtime

PGDay Lowlands

September 2025

https://www.pgbouncer.org/
https://github.com/pgbouncer/pgbouncer

Final thoughts

Don’t be scared, be prepared

e PgBouncer scales gracefully under real-world load
= Helps overcome some PostgreSQL limitations

e Using proper tools helps manage downtime
= Both when things go right and when they don’t

PGDay Lowlands

September 2025

PostgreSQL Belgium

e PgBE PostgreSQL Users Group Belgium meetup group
s October 14 - Google, Brussels
= November 25 - Idewe, Leuven

“b

PGDay Lowlands

September 2025

https://www.meetup.com/postgresbe/

Thank youl!

contact@dataegret.com

PGDay Lowlands

September 2025

mailto:contact@dataegret.com

