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pgBackRest fan & contributor
aka. pgstef
https://pgstef.github.io

Need a Disaster and Recovery Plan? ;-)
Contact Data Egret to talk to me about backups and

high-availability!
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Mastering PostgreSQL Recovery
continuous archiving and PITR

pretty well covered in 
but successful recovery examples are not

PostgreSQL docs
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https://www.postgresql.org/docs/current/continuous-archiving.html#CONTINUOUS-ARCHIVING
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Agenda
Backup basics quick recap
Restore procedure
Recovery settings
Quick demo setup and examples
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Restore vs Recovery
restore process handled by community tools…
recovery done by PostgreSQL itself!
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Backup basics

file-system-level backup (data files)
continuous WAL archiving (data modifications)
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Backup consistency
to recover successfully

continuous sequence of archived WAL files needed…
from backup start to backup stop location
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WAL archives
2 possibilities

archiver process
pg_receivewal  (via Streaming Replication)
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File-system-level backup
pg_basebackup

manual steps
pg_backup_start()

manual file-system-level copy
pg_backup_stop()

10



PGConf.BE
May 7, 2024

Restore procedure
simple but… must be followed carefully!
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Restore steps (1/4)
stop the server if it’s running
keep a temporary copy of your PGDATA and tablespaces

or at least the pg_wal  directory
remove the content of PGDATA and tablespaces directories
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Restore steps (2/4)
restore database files from your file system backup

pay attention to ownership and permissions
verify tablespaces symbolic links

remove content of pg_wal  (if not already the case)
copy unarchived WAL segment files
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Restore steps (3/4)
configure the recovery…

postgresql.conf  + recovery.signal
restore_command = '... some command ...'

prevent ordinary connections in pg_hba.conf  if needed

14



PGConf.BE
May 7, 2024

Restore steps (4/4)
start the server
watch the restore process

until consistent recovery state (or target) reached
inspect your data
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Recovery settings
by default, recover to the end of the WAL stream
how to specify an earlier stopping point?
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Consistent state
recovery_target = 'immediate'

recovery stops when consistent state is reached
(i.e. the point where taking the backup ended)
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Restore point
recovery_target_name

create a named restore point with pg_create_restore_point()

18



PGConf.BE
May 7, 2024

Timestamp
recovery_target_time

timestamp with time zone format
recommended to use a numeric offset from UTC

example: 2024-05-07 09:00:00+02
or write a full time zone name, e.g., Europe/Brussels not CEST
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Transaction ID
recovery_target_xid

transactions committed before (and optionally including) specified
xid will be recovered
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WAL location
recovery_target_lsn

LSN of the write-ahead log location
parameter parsed as system data type pg_lsn
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LSN
log sequence number

position of the record in WAL file
provides uniqueness for each WAL record

=# SELECT pg_current_wal_lsn();

 pg_current_wal_lsn

--------------------

 2/3002020

(1 row)

=# SELECT pg_walfile_name(pg_current_wal_lsn());

     pg_walfile_name

--------------------------

 000000010000000200000003

(1 row)
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WAL filename
000000010000000200000003

00000001 : timeline
00000002 : wal
00000003 : segment

hexadecimal
000000010000000000000001
0000000100000000000000FF
000000010000000100000000
…
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Timeline to follow
archive recovery complete -> new timeline

part of WAL segment file names
to identify the series of WAL records generated after that recover
.history  files

recovery_target_timeline

default: latest  (v12+) or current  (< v12)
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Timelines explanation
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Timelines explanation (2)
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Timelines explanation (3)
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Stop after or before the target
recovery_target_inclusive

recovery stops just after recovery target ( on )…
…or just before ( off )
works with LSN, time or xid
default is on
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Action once recovery target is reached
recovery_target_action

pause ( pg_wal_replay_resume() )
promote
shutdown
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Summary
recovery targets:

recovery_target = 'immediate'

recovery_target_name , recovery_target_time
recovery_target_xid , recovery_target_lsn

timeline to follow:
recovery_target_timeline

stop after or before the target?
recovery_target_inclusive

action once recovery target is reached?
recovery_target_action
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Quick demo setup
$ createdb pgbench

$ /usr/pgsql-16/bin/pgbench -i -s 600 pgbench

$ /usr/pgsql-16/bin/pgbench -c 4 -j 2 -T 300 pgbench

archive_mode = on

archive_command = 'test ! -f /backup_space/archives/%f && cp %p /backup_space/archives/%f'
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Take a backup
$ pg_basebackup -D "/backup_space/backups/$(date +'%F_%T')" \

 --format=plain --wal-method=none --checkpoint=fast --progress

NOTICE:  all required WAL segments have been archived

9233844/9233844 kB (100%), 1/1 tablespace
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Oops time…
SELECT pg_create_restore_point('RP1');

BEGIN;

    SELECT pg_current_wal_lsn(), current_timestamp;

    DELETE FROM pgbench_tellers;

COMMIT;

BEGIN;

    CREATE TABLE important_table (field text);

    INSERT INTO important_table VALUES ('important data');

COMMIT;

SELECT pg_switch_wal();
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Useful information from the output
pgbench=*# SELECT pg_current_wal_lsn(), current_timestamp;

 pg_current_wal_lsn |       current_timestamp

--------------------+-------------------------------

 2/B0786608         | 2024-05-07 08:50:10.316588+00

(1 row)
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pg_waldump
$ /usr/pgsql-16/bin/pg_waldump /backup_space/archives/0000000100000002000000B0

rmgr: XLOG        len (rec/tot):     98/    98, tx:          0,

    lsn: 2/B0786568, prev 2/B0786530, desc: RESTORE_POINT RP1

...

rmgr: Heap        len (rec/tot):     54/    54, tx:     259070, lsn: 2/B0786608,

    prev 2/B07865D0, desc: DELETE xmax: 259070, off: 1, infobits: [KEYS_UPDATED],

    flags: 0x01, blkref #0: rel 1663/16384/16400 blk 0

...

rmgr: Transaction len (rec/tot):     34/    34, tx:     259070, lsn: 2/B07D8A60,

    prev 2/B07D8A28, desc: COMMIT 2024-05-07 08:50:10.321494 UTC
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How to identify our relation?
pgbench=# SELECT dattablespace AS tablespace, oid AS database,

          pg_relation_filenode('pgbench_tellers') AS table

          FROM pg_database

          WHERE datname=current_database();

 tablespace | database | table

------------+----------+-------

       1663 |    16384 | 16400

(1 row)
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Findings…
name: RP1
lsn: prev 2/B07865D0  (lsn before the first DELETE)
xid: tx: 259070
time: 2024-05-07 08:50:10.316588+00

or COMMIT 2024-05-07 08:50:10.321494 UTC
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Don’t forget to practice!
Schrödinger’s Law of Backups

The condition/state of any backup is unknown until
a restore is attempted.
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Recovery example (1)
$ touch /var/lib/pgsql/16/data/recovery.signal

# postgresql(.auto).conf

archive_mode = off

restore_command = 'cp /backup_space/archives/%f %p'

recovery_target = 'immediate'

recovery_target_action = 'promote'

$ cat /var/lib/pgsql/16/data/backup_label

START WAL LOCATION: 2/23C700 (file 000000010000000200000000)

...

39



PGConf.BE
May 7, 2024

Look at the logs
LOG:  starting point-in-time recovery to earliest consistent point

LOG:  starting backup recovery with redo LSN 2/23C700,...

LOG:  restored log file "000000010000000200000000" from archive

LOG:  redo starts at 2/23C700

LOG:  restored log file "..." from archive

...

LOG:  consistent recovery state reached at 2/1EA6C7C8

LOG:  database system is ready to accept read-only connections

LOG:  recovery stopping after reaching consistency

...

LOG:  selected new timeline ID: 2

LOG:  archive recovery complete

LOG:  database system is ready to accept connections
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Recovery example (2)
what if we know exactly our recovery target?

# postgresql(.auto).conf

restore_command = 'cp /backup_space/archives/%f %p'

recovery_target_xid = '259070'

recovery_target_inclusive = off

recovery_target_action = 'promote'
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Look at the logs
LOG:  starting point-in-time recovery to XID 259070

LOG:  starting backup recovery with redo LSN 2/23C700,...

LOG:  restored log file "..." from archive

...

LOG:  consistent recovery state reached at 2/1EA6C7C8

LOG:  database system is ready to accept read-only connections

...

LOG:  recovery stopping before commit of transaction 259070,

      time 2024-05-07 08:50:10.321494+00

...

LOG:  selected new timeline ID: 2

LOG:  archive recovery complete

LOG:  database system is ready to accept connections
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Look at the backup space
archive_mode  was enabled this time!

$ cat /backup_space/archives/00000002.history

1   2/B07D8A60  before transaction 259070

43



PGConf.BE
May 7, 2024

Recovery example (3)
use the named restore point

# postgresql(.auto).conf

restore_command = 'cp /backup_space/archives/%f %p'

recovery_target_name = 'RP1'
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Look at the logs

psql -c "SELECT pg_wal_replay_resume();"

LOG:  recovery stopping at restore point "RP1", time 2024-05-07 08:50:01.56315+00

LOG:  pausing at the end of recovery

HINT:  Execute pg_wal_replay_resume() to promote.

LOG:  selected new timeline ID: 3

LOG:  archive recovery complete

LOG:  database system is ready to accept connections
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Recovery example (4)
What about our important data ?

pgbench=# SELECT * FROM important_table;

ERROR:  relation "important_table" does not exist

LINE 1: SELECT * FROM important_table;

                      ^
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What timeline to follow?
By default, PostgreSQL will follow the latest  timeline!

$ cat /backup_space/archives/00000003.history

1   2/B07D8A60  before transaction 259070

2   2/B07865D0  at restore point "RP1"

# postgresql(.auto).conf

restore_command = 'cp /backup_space/archives/%f %p'

recovery_target_timeline = 'current'
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Look at the logs
LOG:  starting archive recovery

LOG:  starting backup recovery with redo LSN 2/23C700,...

...

LOG:  restored log file "0000000100000002000000B1" from archive

LOG:  redo done at 2/B1000148 ...

LOG:  restored log file "00000002.history" from archive

LOG:  restored log file "00000003.history" from archive

LOG:  selected new timeline ID: 4

LOG:  archive recovery complete

LOG:  database system is ready to accept connections
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Ta-da!
pgbench=# SELECT * FROM important_table;

     field

----------------

 important data

(1 row)
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Conclusion
tools make life easier…
restore points are easy to use
as usual, practice is the key to success
the answer is in the PostgreSQL logs!
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PGConf Belgium

 meetup group

 - May 15 (next Wednesday!)

 - Lille, June 11-12

PgBE PostgreSQL Users Group Belgium

Aachen meetup

PG Day France
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https://www.meetup.com/postgresbe/
https://www.meetup.com/postgresql-user-group-nrw/events/298800756/
https://pgday.fr/
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Questions?

Thank you for your attention!
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