
PGConf.BE
May 7, 2024

Stefan FERCOT

stefan.fercot@dataegret.com

Mastering PostgreSQL Recovery:
Beyond Backup Basics

1

PGConf.BE
May 7, 2024 2

PGConf.BE
May 7, 2024

Stefan Fercot
Senior PostgreSQL Expert @Data Egret
pgBackRest fan & contributor
aka. pgstef
https://pgstef.github.io

Need a Disaster and Recovery Plan? ;-)
Contact Data Egret to talk to me about backups and

high-availability!

3

https://pgstef.github.io/

PGConf.BE
May 7, 2024

Mastering PostgreSQL Recovery
continuous archiving and PITR

pretty well covered in
but successful recovery examples are not

PostgreSQL docs

4

https://www.postgresql.org/docs/current/continuous-archiving.html#CONTINUOUS-ARCHIVING

PGConf.BE
May 7, 2024

Agenda
Backup basics quick recap
Restore procedure
Recovery settings
Quick demo setup and examples

5

PGConf.BE
May 7, 2024

Restore vs Recovery
restore process handled by community tools…
recovery done by PostgreSQL itself!

6

PGConf.BE
May 7, 2024

Backup basics

file-system-level backup (data files)
continuous WAL archiving (data modifications)

7

PGConf.BE
May 7, 2024

Backup consistency
to recover successfully

continuous sequence of archived WAL files needed…
from backup start to backup stop location

8

PGConf.BE
May 7, 2024

WAL archives
2 possibilities

archiver process
pg_receivewal (via Streaming Replication)

9

PGConf.BE
May 7, 2024

File-system-level backup
pg_basebackup

manual steps
pg_backup_start()

manual file-system-level copy
pg_backup_stop()

10

PGConf.BE
May 7, 2024

Restore procedure
simple but… must be followed carefully!

11

PGConf.BE
May 7, 2024

Restore steps (1/4)
stop the server if it’s running
keep a temporary copy of your PGDATA and tablespaces

or at least the pg_wal directory
remove the content of PGDATA and tablespaces directories

12

PGConf.BE
May 7, 2024

Restore steps (2/4)
restore database files from your file system backup

pay attention to ownership and permissions
verify tablespaces symbolic links

remove content of pg_wal (if not already the case)
copy unarchived WAL segment files

13

PGConf.BE
May 7, 2024

Restore steps (3/4)
configure the recovery…

postgresql.conf + recovery.signal
restore_command = '... some command ...'

prevent ordinary connections in pg_hba.conf if needed

14

PGConf.BE
May 7, 2024

Restore steps (4/4)
start the server
watch the restore process

until consistent recovery state (or target) reached
inspect your data

15

PGConf.BE
May 7, 2024

Recovery settings
by default, recover to the end of the WAL stream
how to specify an earlier stopping point?

16

PGConf.BE
May 7, 2024

Consistent state
recovery_target = 'immediate'

recovery stops when consistent state is reached
(i.e. the point where taking the backup ended)

17

PGConf.BE
May 7, 2024

Restore point
recovery_target_name

create a named restore point with pg_create_restore_point()

18

PGConf.BE
May 7, 2024

Timestamp
recovery_target_time

timestamp with time zone format
recommended to use a numeric offset from UTC

example: 2024-05-07 09:00:00+02
or write a full time zone name, e.g., Europe/Brussels not CEST

19

PGConf.BE
May 7, 2024

Transaction ID
recovery_target_xid

transactions committed before (and optionally including) specified
xid will be recovered

20

PGConf.BE
May 7, 2024

WAL location
recovery_target_lsn

LSN of the write-ahead log location
parameter parsed as system data type pg_lsn

21

PGConf.BE
May 7, 2024

LSN
log sequence number

position of the record in WAL file
provides uniqueness for each WAL record

=# SELECT pg_current_wal_lsn();

 pg_current_wal_lsn

 2/3002020

(1 row)

=# SELECT pg_walfile_name(pg_current_wal_lsn());

 pg_walfile_name

 000000010000000200000003

(1 row)

22

PGConf.BE
May 7, 2024

WAL filename
000000010000000200000003

00000001 : timeline
00000002 : wal
00000003 : segment

hexadecimal
000000010000000000000001
0000000100000000000000FF
000000010000000100000000
…

23

PGConf.BE
May 7, 2024

Timeline to follow
archive recovery complete -> new timeline

part of WAL segment file names
to identify the series of WAL records generated after that recover
.history files

recovery_target_timeline

default: latest (v12+) or current (< v12)

24

PGConf.BE
May 7, 2024

Timelines explanation

25

PGConf.BE
May 7, 2024

Timelines explanation (2)

26

PGConf.BE
May 7, 2024

Timelines explanation (3)

27

PGConf.BE
May 7, 2024

Stop after or before the target
recovery_target_inclusive

recovery stops just after recovery target (on)…
…or just before (off)
works with LSN, time or xid
default is on

28

PGConf.BE
May 7, 2024

Action once recovery target is reached
recovery_target_action

pause (pg_wal_replay_resume())
promote
shutdown

29

PGConf.BE
May 7, 2024

Summary
recovery targets:

recovery_target = 'immediate'

recovery_target_name , recovery_target_time
recovery_target_xid , recovery_target_lsn

timeline to follow:
recovery_target_timeline

stop after or before the target?
recovery_target_inclusive

action once recovery target is reached?
recovery_target_action

30

PGConf.BE
May 7, 2024

Quick demo setup
$ createdb pgbench

$ /usr/pgsql-16/bin/pgbench -i -s 600 pgbench

$ /usr/pgsql-16/bin/pgbench -c 4 -j 2 -T 300 pgbench

archive_mode = on

archive_command = 'test ! -f /backup_space/archives/%f && cp %p /backup_space/archives/%f'

31

PGConf.BE
May 7, 2024

Take a backup
$ pg_basebackup -D "/backup_space/backups/$(date +'%F_%T')" \

 --format=plain --wal-method=none --checkpoint=fast --progress

NOTICE: all required WAL segments have been archived

9233844/9233844 kB (100%), 1/1 tablespace

32

PGConf.BE
May 7, 2024

Oops time…
SELECT pg_create_restore_point('RP1');

BEGIN;

 SELECT pg_current_wal_lsn(), current_timestamp;

 DELETE FROM pgbench_tellers;

COMMIT;

BEGIN;

 CREATE TABLE important_table (field text);

 INSERT INTO important_table VALUES ('important data');

COMMIT;

SELECT pg_switch_wal();

33

PGConf.BE
May 7, 2024

Useful information from the output
pgbench=*# SELECT pg_current_wal_lsn(), current_timestamp;

 pg_current_wal_lsn | current_timestamp

--------------------+-------------------------------

 2/B0786608 | 2024-05-07 08:50:10.316588+00

(1 row)

34

PGConf.BE
May 7, 2024

pg_waldump
$ /usr/pgsql-16/bin/pg_waldump /backup_space/archives/0000000100000002000000B0

rmgr: XLOG len (rec/tot): 98/ 98, tx: 0,

 lsn: 2/B0786568, prev 2/B0786530, desc: RESTORE_POINT RP1

...

rmgr: Heap len (rec/tot): 54/ 54, tx: 259070, lsn: 2/B0786608,

 prev 2/B07865D0, desc: DELETE xmax: 259070, off: 1, infobits: [KEYS_UPDATED],

 flags: 0x01, blkref #0: rel 1663/16384/16400 blk 0

...

rmgr: Transaction len (rec/tot): 34/ 34, tx: 259070, lsn: 2/B07D8A60,

 prev 2/B07D8A28, desc: COMMIT 2024-05-07 08:50:10.321494 UTC

35

PGConf.BE
May 7, 2024

How to identify our relation?
pgbench=# SELECT dattablespace AS tablespace, oid AS database,

 pg_relation_filenode('pgbench_tellers') AS table

 FROM pg_database

 WHERE datname=current_database();

 tablespace | database | table

------------+----------+-------

 1663 | 16384 | 16400

(1 row)

36

PGConf.BE
May 7, 2024

Findings…
name: RP1
lsn: prev 2/B07865D0 (lsn before the first DELETE)
xid: tx: 259070
time: 2024-05-07 08:50:10.316588+00

or COMMIT 2024-05-07 08:50:10.321494 UTC

37

PGConf.BE
May 7, 2024

Don’t forget to practice!
Schrödinger’s Law of Backups

The condition/state of any backup is unknown until
a restore is attempted.

38

PGConf.BE
May 7, 2024

Recovery example (1)
$ touch /var/lib/pgsql/16/data/recovery.signal

postgresql(.auto).conf

archive_mode = off

restore_command = 'cp /backup_space/archives/%f %p'

recovery_target = 'immediate'

recovery_target_action = 'promote'

$ cat /var/lib/pgsql/16/data/backup_label

START WAL LOCATION: 2/23C700 (file 000000010000000200000000)

...

39

PGConf.BE
May 7, 2024

Look at the logs
LOG: starting point-in-time recovery to earliest consistent point

LOG: starting backup recovery with redo LSN 2/23C700,...

LOG: restored log file "000000010000000200000000" from archive

LOG: redo starts at 2/23C700

LOG: restored log file "..." from archive

...

LOG: consistent recovery state reached at 2/1EA6C7C8

LOG: database system is ready to accept read-only connections

LOG: recovery stopping after reaching consistency

...

LOG: selected new timeline ID: 2

LOG: archive recovery complete

LOG: database system is ready to accept connections

40

PGConf.BE
May 7, 2024

Recovery example (2)
what if we know exactly our recovery target?

postgresql(.auto).conf

restore_command = 'cp /backup_space/archives/%f %p'

recovery_target_xid = '259070'

recovery_target_inclusive = off

recovery_target_action = 'promote'

41

PGConf.BE
May 7, 2024

Look at the logs
LOG: starting point-in-time recovery to XID 259070

LOG: starting backup recovery with redo LSN 2/23C700,...

LOG: restored log file "..." from archive

...

LOG: consistent recovery state reached at 2/1EA6C7C8

LOG: database system is ready to accept read-only connections

...

LOG: recovery stopping before commit of transaction 259070,

 time 2024-05-07 08:50:10.321494+00

...

LOG: selected new timeline ID: 2

LOG: archive recovery complete

LOG: database system is ready to accept connections

42

PGConf.BE
May 7, 2024

Look at the backup space
archive_mode was enabled this time!

$ cat /backup_space/archives/00000002.history

1 2/B07D8A60 before transaction 259070

43

PGConf.BE
May 7, 2024

Recovery example (3)
use the named restore point

postgresql(.auto).conf

restore_command = 'cp /backup_space/archives/%f %p'

recovery_target_name = 'RP1'

44

PGConf.BE
May 7, 2024

Look at the logs

psql -c "SELECT pg_wal_replay_resume();"

LOG: recovery stopping at restore point "RP1", time 2024-05-07 08:50:01.56315+00

LOG: pausing at the end of recovery

HINT: Execute pg_wal_replay_resume() to promote.

LOG: selected new timeline ID: 3

LOG: archive recovery complete

LOG: database system is ready to accept connections

45

PGConf.BE
May 7, 2024

Recovery example (4)
What about our important data ?

pgbench=# SELECT * FROM important_table;

ERROR: relation "important_table" does not exist

LINE 1: SELECT * FROM important_table;

 ^

46

PGConf.BE
May 7, 2024

What timeline to follow?
By default, PostgreSQL will follow the latest timeline!

$ cat /backup_space/archives/00000003.history

1 2/B07D8A60 before transaction 259070

2 2/B07865D0 at restore point "RP1"

postgresql(.auto).conf

restore_command = 'cp /backup_space/archives/%f %p'

recovery_target_timeline = 'current'

47

PGConf.BE
May 7, 2024

Look at the logs
LOG: starting archive recovery

LOG: starting backup recovery with redo LSN 2/23C700,...

...

LOG: restored log file "0000000100000002000000B1" from archive

LOG: redo done at 2/B1000148 ...

LOG: restored log file "00000002.history" from archive

LOG: restored log file "00000003.history" from archive

LOG: selected new timeline ID: 4

LOG: archive recovery complete

LOG: database system is ready to accept connections

48

PGConf.BE
May 7, 2024

Ta-da!
pgbench=# SELECT * FROM important_table;

 field

 important data

(1 row)

49

PGConf.BE
May 7, 2024

Conclusion
tools make life easier…
restore points are easy to use
as usual, practice is the key to success
the answer is in the PostgreSQL logs!

50

PGConf.BE
May 7, 2024

PGConf Belgium

 meetup group

 - May 15 (next Wednesday!)

 - Lille, June 11-12

PgBE PostgreSQL Users Group Belgium

Aachen meetup

PG Day France

51

https://www.meetup.com/postgresbe/
https://www.meetup.com/postgresql-user-group-nrw/events/298800756/
https://pgday.fr/

PGConf.BE
May 7, 2024

Questions?

Thank you for your attention!

52

