
PGConf Belgium 2022
Stefan FERCOT

Thu May 19th, 2022

Point-in-time Recovery, target 2022

© Copyright EntrepriseDB Corporation, 2022. All rights reserved.

1

Who Am I?
Stefan Fercot
aka. pgstef

PostgreSQL user since 2010
pgBackRest fan & contributor
Database Backup Architect @EDB

https://pgstef.github.io

2

https://pgstef.github.io/

Agenda
What is WAL?
Point-In-Time Recovery (PITR)

WAL archives
File-system-level backup
Restore

PITR Tools

3

What is WAL?
write-ahead log

transaction log (aka xlog)
usually 16 MB (default)

--wal-segsize initdb parameter to change it
pg_xlog (<= v9.6) -> pg_wal (v10+)
designed to prevent data loss in most situations

4

Write-Ahead Log (WAL)
transactions written sequentially

COMMIT when data are flushed to disk
WAL replay after a crash

make the database consistent

5

Data modifications
transactions modify data in shared_buffers

checkpoints and background writer…
… push all dirty buffers to the storage

6

Data modifications (2)

7

Point-In-Time Recovery (PITR)
combine

file-system-level backup
continuous archiving of WAL files

restore the file-system-level backup and replay archived WAL files

8

Benefits
live backup
less data-losses
not mandatory to replay WAL entries all the way to the end

9

Drawbacks
complete cluster backup…

… and restore
big storage space (data + WAL archives)
WAL clean-up blocked if archiving fails
not as simple as pg_dump

10

WAL archives
2 possibilities

archiver process
pg_receivewal (via Streaming Replication)

11

Archiver process
configuration (postgresql.conf)

wal_level = replica

archive_mode = on or always

archive_command = '... some command ...'

archive_timeout = 0

don’t forget to flush the file on disk!

12

pg_receivewal

archiving via Streaming Replication
writes locally WAL files
supposed to get data faster than the archiver process
replication slot advised!

13

Benefits and drawbacks
archiver process

easy to setup
maximum 1 WAL possible to lose

pg_receivewal

more complex implementation
only the last transactions are lost

14

Archive library
upcoming in v15
running archive_command is slow

mostly because of system() calls
archive_library = 'basic_archive'

option to call a loadable module for each file to be archived
rather than running a shell command

15

File-system-level backup
pg_basebackup

manual steps

16

pg_basebackup

takes a file-system-level copy
using Streaming Replication connection(s)

collects WAL archives during (or after) the copy
more compression types and server side compression

upcoming in v15
no incremental backup (yet)

$ pg_basebackup --format=tar --wal-method=stream \

 --checkpoint=fast --progress -h HOSTNAME -U NAME \

 -D DIRECTORY

17

Manual steps
pg_start_backup()

manual file-system-level copy
pg_stop_backup()

18

pg_start_backup()

SELECT pg_start_backup (

label : arbitrary user-defined text
fast : immediate checkpoint?
exclusive : exclusive mode?

)

19

Exclusive mode
easy to use but deprecated since 9.6
pg_start_backup()

writes backup_label , tablespace_map

works only on primary servers

20

Non-exclusive mode
pg_stop_backup()

executed in the same connection as pg_start_backup() !
returns backup_label and tablespace_map content

21

Data copy
copy data files while PostgreSQL is running

PGDATA directory
tablespaces

inconsistency protection with WAL archives
ignore

postmaster.pid , postmaster.opts , pg_internal.init
log , pg_wal , pg_replslot ,…

don’t forget configuration files!

22

pg_stop_backup()

SELECT * FROM pg_stop_backup (

exclusive
wait_for_archive

)

on primary server
automatic switch to the next WAL segment

on standby server
consider using pg_switch_wal() on the primary…

23

PostgreSQL 15 - exclusive mode removed

exclusive mode removed
breaking change

pg_backup_start()

pg_backup_stop()

#39969e2a1e4d7f5a37f3ef37d53bbfe171e7d77a

24

https://git.postgresql.org/gitweb/?p=postgresql.git;a=commit;h=39969e2a1e4d7f5a37f3ef37d53bbfe171e7d77a

Summary

25

Restore
recovery procedure is simple but…

must be followed carefully!

26

Recovery steps (1/5)
stop the server if it’s running
keep a temporary copy of your PGDATA / tablespaces

or at least the pg_wal directory
remove the content of PGDATA / tablespaces directories

27

Recovery steps (2/5)
restore database files from your file system backup

pay attention to ownership and permissions
verify tablespaces symbolic links

remove content of pg_wal (if not already the case)
copy unarchived WAL segment files

28

Recovery steps (3/5)
configure the recovery…

before v12: recovery.conf

after: postgresql.conf + recovery.signal

restore_command = '... some command ...'

prevent ordinary connections in pg_hba.conf if needed

> PostgreSQL 12 integrates recovery.conf into postgresql.conf

29

Recovery steps (4/5)
recovery target:

recovery_target_name , recovery_target_time

recovery_target_xid , recovery_target_lsn

recovery_target_inclusive

timeline to follow:
recovery_target_timeline

action once recovery target is reached?
recovery_target_action

30

LSN
log sequence number

position of the record in WAL file
provides uniqueness for each WAL record

=# SELECT pg_current_wal_lsn();

 pg_current_wal_lsn

 2/3002020

(1 row)

=# SELECT pg_walfile_name(pg_current_wal_lsn());

 pg_walfile_name

 000000010000000200000003

(1 row)

31

WAL filename
000000010000000200000003

00000001 : timeline
00000002 : wal
00000003 : segment

hexadecimal
000000010000000000000001
0000000100000000000000FF
000000010000000100000000
…

32

Timelines
archive recovery complete -> new timeline

part of WAL segment file names
to identify the series of WAL records generated after that recover
.history files

recovery_target_timeline

default: latest (v12+) or current (< v12)

33

Timelines (2)

34

Recovery steps (5/5)
start the server
watch the restore process

until consistent recovery state reached
inspect your data

35

Recovery target reached?
recovery_target_action

pause, default: recovery paused
promote: recovery process will finish and server will accept
connections
shutdown: server stopped

paused state can be resumed by using pg_wal_replay_resume()

36

Sample outputs
missing recovery.signal

recovery target not found
recovery target reached
timeline switch

37

Missing recovery.signal
WAL needed for consistency still exists in pg_wal ?

if not, use restore_command …
…if recovery.signal exists!

LOG: invalid checkpoint record

FATAL: could not locate required checkpoint record

HINT: If you are restoring from a backup, touch "...data/recovery.signal"

 and add required recovery options.

 If you are not restoring from a backup, try removing the file

 "...data/backup_label".

 Be careful: removing "...data/backup_label" will result in a corrupt cluster if

 restoring from a backup.

38

Recovery target not found
LOG: starting point-in-time recovery to "RP1"

LOG: restored log file "..." from archive

LOG: redo starts at 0/3000028

LOG: consistent recovery state reached at 0/3000100

LOG: database system is ready to accept read-only connections

LOG: restored log file "..." from archive

FATAL: recovery ended before configured recovery target was reached

...

LOG: database system is shut down

39

Recovery target reached
LOG: recovery stopping at restore point "RP1", time ...

LOG: pausing at the end of recovery

HINT: Execute pg_wal_replay_resume() to promote.

LOG: selected new timeline ID: 2

LOG: archive recovery complete

LOG: database system is ready to accept connections

40

Timeline switch
A correct restore from backup, PITR or not,…

…always involves a timeline switch!
LOG: consistent recovery state reached at ...

LOG: database system is ready to accept read only connections

LOG: restored log file "..." from archive

...

LOG: selected new timeline ID: 2

LOG: archive recovery complete

LOG: database system is ready to accept connections

41

PITR Tools
tools make life easier

pgBackRest
Barman
…

providing
backup, restore, purge methods
archiving commands

42

pgBackRest
written in C
local or remote operation (via SSH or TLS server)
full/differential/incremental backup
parallel and asynchronous operations
S3, Azure, and GCS support
…

43

Barman
written in Python
remote backup and restore with rsync (via SSH)

or Streaming Replication protocol
file level incremental backups with rsync
pg_receivewal & pg_basebackup support
barman-cli-cloud for S3, Azure and GCS access

44

What is a good backup tool?
usable

documentation & support
out-of-box automation of various routines

scalable
parallel execution
compression
incremental & differential backups

reliable

45

Key features comparison
pgBackRest Barman

archive_command YES

archive-async

YES

pg_receivewal NO YES

Incremental backups YES

--type=incr

--type=diff

YES

rsync (hardlinks)

WAL archive compression YES YES

Backup compression YES NO

46

Key features comparison (2)
pgBackRest Barman

Symmetric encryption YES NO

Parallel backup and restore YES YES

Parallel archiving YES NO

Partial restore (only selected databases) YES NO

47

Conclusion
PITR is

reliable
fast[er than pg_dump]
continuous

tools make life easier
choose wisely…
validate your backups!

48

Questions?

49

