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Who Am I?
Stefan Fercot
aka. pgstef

PostgreSQL user since 2010
pgBackRest fan & contributor
Database Backup Architect @EDB

https://pgstef.github.io
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Agenda
What is WAL?
Point-In-Time Recovery (PITR)

WAL archives
File-system-level backup
Restore

PITR Tools
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What is WAL?
write-ahead log

transaction log (aka xlog)
usually 16 MB (default)

--wal-segsize  initdb parameter to change it
pg_xlog (<= v9.6) -> pg_wal (v10+)
designed to prevent data loss in most situations
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Write-Ahead Log (WAL)
transactions written sequentially

COMMIT when data are flushed to disk
WAL replay after a crash

make the database consistent
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Data modifications
transactions modify data in shared_buffers

checkpoints and background writer…
… push all dirty buffers to the storage
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Data modifications (2)
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Point-In-Time Recovery (PITR)
combine

file-system-level backup
continuous archiving of WAL files

restore the file-system-level backup and replay archived WAL files
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Benefits
live backup
less data-losses
not mandatory to replay WAL entries all the way to the end
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Drawbacks
complete cluster backup…

… and restore
big storage space (data + WAL archives)
WAL clean-up blocked if archiving fails
not as simple as pg_dump
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WAL archives
2 possibilities

archiver process
pg_receivewal  (via Streaming Replication)
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Archiver process
configuration ( postgresql.conf )

wal_level = replica

archive_mode = on  or always

archive_command = '... some command ...'

archive_timeout = 0

don’t forget to flush the file on disk!
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pg_receivewal

archiving via Streaming Replication
writes locally WAL files
supposed to get data faster than the archiver process
replication slot advised!
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Benefits and drawbacks
archiver process

easy to setup
maximum 1 WAL possible to lose

pg_receivewal

more complex implementation
only the last transactions are lost
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Archive library
upcoming in v15
running archive_command  is slow

mostly because of system() calls
archive_library = 'basic_archive'

option to call a loadable module for each file to be archived
rather than running a shell command
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File-system-level backup
pg_basebackup

manual steps
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pg_basebackup

takes a file-system-level copy
using Streaming Replication connection(s)

collects WAL archives during (or after) the copy
more compression types and server side compression

upcoming in v15
no incremental backup (yet)

$ pg_basebackup --format=tar --wal-method=stream \


 --checkpoint=fast --progress -h HOSTNAME -U NAME \


 -D DIRECTORY
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Manual steps
pg_start_backup()

manual file-system-level copy
pg_stop_backup()
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pg_start_backup()

SELECT pg_start_backup (

label  : arbitrary user-defined text
fast : immediate checkpoint?
exclusive : exclusive mode?

)
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Exclusive mode
easy to use but deprecated since 9.6
pg_start_backup()

writes backup_label , tablespace_map

works only on primary servers
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Non-exclusive mode
pg_stop_backup()

executed in the same connection as pg_start_backup() !
returns backup_label  and tablespace_map  content
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Data copy
copy data files while PostgreSQL is running

PGDATA directory
tablespaces

inconsistency protection with WAL archives
ignore

postmaster.pid , postmaster.opts , pg_internal.init  
log , pg_wal , pg_replslot ,…

don’t forget configuration files!
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pg_stop_backup()

SELECT * FROM pg_stop_backup (

exclusive
wait_for_archive

)

on primary server
automatic switch to the next WAL segment

on standby server
consider using pg_switch_wal()  on the primary…
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PostgreSQL 15 - exclusive mode removed

exclusive mode removed
breaking change

pg_backup_start()

pg_backup_stop()

#39969e2a1e4d7f5a37f3ef37d53bbfe171e7d77a
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https://git.postgresql.org/gitweb/?p=postgresql.git;a=commit;h=39969e2a1e4d7f5a37f3ef37d53bbfe171e7d77a


Summary
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Restore
recovery procedure is simple but…

must be followed carefully!
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Recovery steps (1/5)
stop the server if it’s running
keep a temporary copy of your PGDATA / tablespaces

or at least the pg_wal  directory
remove the content of PGDATA / tablespaces directories
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Recovery steps (2/5)
restore database files from your file system backup

pay attention to ownership and permissions
verify tablespaces symbolic links

remove content of pg_wal  (if not already the case)
copy unarchived WAL segment files
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Recovery steps (3/5)
configure the recovery…

before v12: recovery.conf

after: postgresql.conf  + recovery.signal

restore_command = '... some command ...'

prevent ordinary connections in pg_hba.conf  if needed

> PostgreSQL 12 integrates recovery.conf into postgresql.conf
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Recovery steps (4/5)
recovery target:

recovery_target_name , recovery_target_time

recovery_target_xid , recovery_target_lsn

recovery_target_inclusive

timeline to follow:
recovery_target_timeline

action once recovery target is reached?
recovery_target_action
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LSN
log sequence number

position of the record in WAL file
provides uniqueness for each WAL record

=# SELECT pg_current_wal_lsn();


 pg_current_wal_lsn


--------------------


 2/3002020


(1 row)





=# SELECT pg_walfile_name(pg_current_wal_lsn());


     pg_walfile_name


--------------------------


 000000010000000200000003


(1 row)
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WAL filename
000000010000000200000003

00000001 : timeline
00000002 : wal
00000003 : segment

hexadecimal
000000010000000000000001
0000000100000000000000FF
000000010000000100000000
…
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Timelines
archive recovery complete -> new timeline

part of WAL segment file names
to identify the series of WAL records generated after that recover
.history  files

recovery_target_timeline

default: latest  (v12+) or current  (< v12)
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Timelines (2)
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Recovery steps (5/5)
start the server
watch the restore process

until consistent recovery state reached
inspect your data
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Recovery target reached?
recovery_target_action

pause, default: recovery paused
promote: recovery process will finish and server will accept
connections
shutdown: server stopped

paused state can be resumed by using pg_wal_replay_resume()
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Sample outputs
missing recovery.signal

recovery target not found
recovery target reached
timeline switch
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Missing recovery.signal
WAL needed for consistency still exists in pg_wal ?

if not, use restore_command …
…if recovery.signal  exists!

LOG:  invalid checkpoint record

FATAL:  could not locate required checkpoint record


HINT:  If you are restoring from a backup, touch "...data/recovery.signal"


  and add required recovery options.


  If you are not restoring from a backup, try removing the file


  "...data/backup_label".

  Be careful: removing "...data/backup_label" will result in a corrupt cluster if


  restoring from a backup.
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Recovery target not found
LOG:  starting point-in-time recovery to "RP1"


LOG:  restored log file "..." from archive


LOG:  redo starts at 0/3000028


LOG:  consistent recovery state reached at 0/3000100


LOG:  database system is ready to accept read-only connections


LOG:  restored log file "..." from archive


FATAL:  recovery ended before configured recovery target was reached

...


LOG:  database system is shut down
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Recovery target reached
LOG:  recovery stopping at restore point "RP1", time ...


LOG:  pausing at the end of recovery


HINT:  Execute pg_wal_replay_resume() to promote.

LOG:  selected new timeline ID: 2


LOG:  archive recovery complete

LOG:  database system is ready to accept connections
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Timeline switch
A correct restore from backup, PITR or not,… 


…always involves a timeline switch!
LOG:  consistent recovery state reached at ...


LOG:  database system is ready to accept read only connections


LOG:  restored log file "..." from archive


...


LOG:  selected new timeline ID: 2


LOG:  archive recovery complete

LOG:  database system is ready to accept connections

41



PITR Tools
tools make life easier

pgBackRest
Barman
…

providing
backup, restore, purge methods
archiving commands
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pgBackRest
written in C
local or remote operation (via SSH or TLS server)
full/differential/incremental backup
parallel and asynchronous operations
S3, Azure, and GCS support
…
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Barman
written in Python
remote backup and restore with rsync (via SSH)

or Streaming Replication protocol
file level incremental backups with rsync
pg_receivewal  & pg_basebackup  support
barman-cli-cloud  for S3, Azure and GCS access
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What is a good backup tool?
usable

documentation & support
out-of-box automation of various routines

scalable
parallel execution
compression
incremental & differential backups

reliable
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Key features comparison
pgBackRest Barman

archive_command YES

archive-async

YES

pg_receivewal NO YES

Incremental backups YES

--type=incr 

--type=diff

YES

rsync (hardlinks)

WAL archive compression YES YES

Backup compression YES NO
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Key features comparison (2)
pgBackRest Barman

Symmetric encryption YES NO

Parallel backup and restore YES YES

Parallel archiving YES NO

Partial restore (only selected databases) YES NO
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Conclusion
PITR is

reliable
fast[er than pg_dump ]
continuous

tools make life easier
choose wisely…
validate your backups!
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Questions?
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